
II IIII I' ' ' = ...... --. = _=

Test of the Equivalence Principle in an Einstein Elevator

Annual Report #I

NASA Grant NAGS- 1780

For t_l_p_od 30 April 2001 through 28 February 2002

Principal Investigator

Irwin I. Shapiro

m

-,_°-- _.i;_-:--: May 2002---: :: ......... .- -......--_- . - _

=--- Prepared for

1tics and Space Administration

...... Officeof Biological and Physical Research

Washington, DC

-_-Smithsonian Institution

Astrophysical Observatory

Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory

is a member of the

Harvard-Smithsonian Center for Astrophysics





Test of the Equivalence Principle in an Einstein Elevator

Annual Report #1

NASA Grant NAG8-1780

For the period 30 April 2001 through 28 February 2002

Princip.al Investigator

Irwin I. Shapiro

Co-Investigators

S. Glashow

E.C. Lorenzini

M.L. Cosmo

P. Cheimets

N. Finkelstein (E/PO)

M. Schneps (E/PO)

Ph.D. Students

A. Turner

C. Bombardelli

G. Parzianello

Non-US Collaboratin_g PIPI

V. Iafolla (IFSI/CNR)

May 2002

Prepared for

National Aeronautics and Space Administration

Office of Biological and Physical Research

Washington, DC

Smithsonian Institution

Astrophysical Observatory

Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory

is a member of the

Harvard-Smithsonian Center for Astrophysics

ii





TABLE OF CONTENTS

INTRODUCTION ................................................................................................................................................ 2

DESCRIPTION OF EXPERIMENT CONCEPT ........................................................................................... 2

NEED FOR PICOGRAVITY ENVIRONMENT .......................................................................................................... 2

DROP FACILITY .................................................................................................................................................. 3

DETECTOR .......................................................................................................................................................... 4

EXPERIMENT SEQUENCE AND COMMUNICATION LINKS ................................................................................... 6

ANALYSIS OF FREE FALL PHASE .............................................................................................................. 9

FREE FALL TIME ................................................................................................................................................. 9

EFFECT OF WIND SHEAR ................................................................................................................................. 13

SCIENCE CONCEPT ANALYSIS ................................................................................................................. 16

ACCELERATION NOISE INSIDE CAPSULE ......................................................................................................... 16

INTERNAL NOISE OF DETECTOR ....................................................................................................................... 18

GRAVITY GRADIENTS ...................................................................................................................................... 19

Capsule Gravity Gradients ........................................................................................................................ 19

Variation of k j, k:, and kz along free-fall trajectories .............................................................................. 38

Cylindrical cryostat with fiat caps .......................................................................................................... 39

Cylindrical cryostat with hemispherical caps ........................................................................................ 42

Earth's gravity gradient ............................................................................................................................. 45

Disturbances induced by concentrated masses on board the capsule ..................................................... 47

Effect of Gravity Gradients on Differential Acceleration Measurement ................................................. 50

THERMAL ANALYSIS/ISSUES .................................................................................................................... 52

EFFECT OF RESIDUAL GAS ................................................................................................................................ 52

RADIOMETER EFFECT ....................................................................................................................................... 52

THERMAL ISSUES AND DESIGN ........................................................................................................................ 52

PRELIMINARY THERMAL RESULTS .................................................................................................................. 56

CAPSULE/CRYOSTAT DESIGN APPROACH .......................................................................................... 59

INTRODUCTORY REMARKS .............................................................................................................................. 59

OPTIMIZATION OF CAPSULE SIZE AND MASS .................................................................................................. 60

OPTIMIZATION RESULTS .................................................................................................................................. 65

REQUIREMENTS DEVELOPMENT ............................................................................................................ 68

UPDATED REFERENCE CONFIGURATION ............................................................................................ 69

THEORETICAL IMPA CTS ............................................................................................................................ 71

CONTRIBUTION OF PARITY NON-CONSERVING WEAK INTERACTIONS .......................................................... 71
Introduction ........................................................................................................................................................ 7 I

Evaluation of contribution ................................................................................................................................. 71

KEY AREAS TO BE ANALYZED ................................................................................................................. 80

REFERENCES ................................................................................................................................................... 82





INTRODUCTION

The scientific goal of the experiment is to test the equality of gravitational and inertial

mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate

of fall of bodies from the composition of the falling body. The measurement is

accomplished by measuring the relative displacement (or equivalently acceleration) of

two falling bodies of different materials which are the proof masses of a differential

accelerometer. The goal of the experiment is to measure the E6tvOs ratio 6g/g

(differential acceleration/common acceleration) with an accuracy goal of a few parts in

1015 . The estimated accuracy is about two orders of magnitude better than the present

state of the art. The experiment is a null experiment in which a result different from zero

will indicate a violation of the Equivalence Principle.

The main goal of the study to be carried out under this grant is the flight definition of the

experiment and bread boarding of critical components of the experiment that will enable

us to be ready for the following phases of the project. The project involves an

international cooperation in which the responsibility of the US side is the flight definition

of the experimental facility while the responsibility of the non-US partners is the flight

definition and laboratory prototyping of the differential acceleration detector.

In summary, the experiment to be designed is for taking differential acceleration

measurements with a high-sensitivity detector (the sensor) during free fall conditions

lasting up to 30 s in a disturbance-free acceleration environment. The experiment

strategy consists in letting the sensor free fall inside a few meters long (in the vertical

direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere

after release from a helium balloon flying at a stratospheric altitude.

DESCRIPTION OF EXPERIMENT CONCEPT

Need for Picogravity Environment

The accuracy of the Weak Equivalence Principle (WEP) tests with laboratory proof

masses on the ground is limited by the Earth's seismic noise and the weakness of suitable

signal sources. Previous experiments include the famous torsion balance experiments of

EOtv6s (1890-1922) _ _ias well as the classical tests of the Equivalence Principle by Roll-

Krotkov-Dicke (1964) _ utilizing a torsion balance which had an accuracy of 3 parts in

10 _ and the I.I. Shapiro et al. (1976) iv and Williams et al. (1976) v lunar laser ranging

experiment with an accuracy of 3 parts in 10 _2. The present state of the art is at a few

parts in 1013 both for lunar laser ranging tests (Williams et al., 1996) vi and for torsion

balance tests (Adelberger et al., 1999) v_.

By conducting the experiment in free fall, the signal strength increases by about three

orders of magnitude because the full strength of the Earth's gravity is sensed in free fall.

Seismic noise is also absent in free fall. Seismic noise is replaced in orbit by the noise
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sourcesof thespaceenvironmentwhichrequiredragfreestagesor dragcompensationin
orderto achievethe promisedimprovementsin the testaccuracy. An orbital free fall,
with a "drag-free" satellite,is oneapproachthat hasbeenunderdevelopmentfor many
years.A small numberof orbital testsof the WEP hasbeenproposedwith estimated
accuraciesof 10 -15 viii, 10_17 _x,and 10 -18 x. An alternative to the free fall in space is the

vertical free falt inside a drag-shielding capsule released from a balloon at a stratospheric

altitude as proposed in this experiment '_.

An orbital free-fall has advantages and disadvantages with respect to vertical free fall. On

the one hand, orbital free-fall tests can achieve an even higher accuracy than vertical free-

fall tests thanks to the longer integration time and lower resonance frequency of the

detector. On the other hand, vertical free fall tests have some key advantages over orbital

tests. First of all, in a vertical free fall (from a balloon) the experiment can be repeated at

relatively short intervals of time (a few weeks) and at a more affordable cost. The ability

to repeat the experiment is important for the success because these high-accuracy

differential detectors can not be tested on the ground at the accuracy that they can achieve

in free fall conditions. Therefore, modifications and improvements have to be expected

before the detector/experiment performs at the estimated free-fall accuracy.

Both orbital and vertical free fall are Galilean expefirnents in which the differential

displacement or rate of fail or acceleration is measured between two bodies of different

materials falling in a gravitational field. However, classic Galilean experiments, in which

the relative displacement of two bodies falling side by side is measured (with drops

ranging from lm to 140m) have yielded an accuracy '_ in testing the WEP of order 10 -_°.

The limitation mostly stems from relative errors in initial conditions at release which

propagate over time due to gravity gradients. This problem can be overcome in orbital

and long vertical free falls (i.e., from stratospheric heights) thanks to two provisions: (1)

the initial relative motion of the two sensing masses inside the detector is abated during a

damping phase preceding the measurement phase and (2) the detector is rotated with

respect to the gravity field in orde r to modulate the signal (at a frequency fs) and move

the frequency of the effect of key gravity gradient components to 2fs.

The test of the Equivalence Principle requires a differential measurement of acceleration.

This fact has a positive consequence in terms of the rejection of accelerations that affect

the two proof masses equally (common-mode type) and their effects on the differential

acceleration. Typical values of the common-mode rejection factor of differential

accelerometers are of order 10 4. Consequently, for an experiment that aims at measuring

differential acceleration of order 10 -_5 g, the acceleration perturbations external to the

detector must be of order 10 _2 g or less.

Drop Facility

The following is a preliminary description of the drop facility the design of which will

evolve as a result of the analyses carried out during the flight definition phase. The free

fall facility (see Fig. 1) consists of: (1) the gondola that stays attached to the balloon; (2)

a leveling mechanism that keeps the capsule vertical before release; (3) the capsule,

which houses a large vacuum chamber/cryostat; (4) the instrument package which free
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falls insidethecryostatandcontainsasmall,high-vacuumchamberwhich in turn houses

the detector; and (5) the parachute system to decelerate the capsule at the end of the free

fall run.

The capsule is kept vertically leveled and stabilized in azimuth by the gondola before

release. Upon reaching an altitude higher than 40 km, the capsule is released from the

gondola and immediately afterwards (,: 1 s) the instrument package is released from the

top of the capsule. The analysis indicates (see later on) that with a i-3 m long vertical

space available inside the capsule, the instrument package will span that space in 25-30 s

while the capsule, that is slightly decelerated by the rarefied atmosphere, falls by a few

km over the same time. The capsule shields the instrument package from external

perturbations and allows it to free fallunder acceleration conditions which are close to

ideal. The differential accelerations between the two failing test masses are measured

during the free fall time. At the end of the free-fall run the capsule is decelerated by a

parachute system for recovery in water or over land.

Figure 1 Pre-definition-study configuration of capsule in free fall after detector release

Detector

The following is a preliminary description of the differential acceleration detector, the

design of which (carried out in cooperation with our non-US partners) will evolve as a

result of the analyses conducted during the flight definition phase.

The detector that we plan to use for the experiment is a differential accelerometer

that will be developed at the Institute of Space Physics (IFSI) in Rome (Italy), under the

sponsorship of the Italian Space Agency in the framework of the participation in this

project of non-US investigators (V. Iafolla, PI). This detector technology x_i has been

pioneered by V. Iafolla and the late F. Fuiigni and applied to the construction of a number

4



of high-sensitivity, low-frequency accelerometers over several years. In the following we

give a brief description of the detector conceptual design at this stage of the project.

The differential-acceleration detector (see Fig. 2) measures the relative displacement,

along the sensitive axis, between two sensing masses of different materials. The centers

of mass of the sensing masses are made to coincide within the attainable values in order

to minimize the effect of gravity gradients, rotational motions and linear accelerations

upon the differential output signal.

Figure 2 Longitudinal section of instrument and sensing masses.

The two sensing masses are constrained by torsion springs to rotate independently

about the twist axis (which is parallel to the spin axis of the instrument) and t:heir

resonant frequencies are electrostatically controlled for frequency matching. The

displacements generated by the rotations are sensed by the capacitive pick-ups off the

instrument as explained later on. Sensing mass 1 (in dark color) is a hollow cylinder

mostly made of a given material while sensing mass 2 (in light color) is a dumbbell-

shaped cylinder made of a different material. Each sensing mass constitutes the mowing

part of a capacitor with symmetric fixed plates on either side of the sensing mass (see

Fig. 3). Capacitor I is formed by sensing mass 1 and the fixed plates marked A arid B

while capacitor 2 is formed by sensing mass 2 and the fixed plates marked C and D. The

fixed plates A and C are used for signal pick-up and the fixed plates B and D for f_eed-

back control. The displacement of sensing mass 1, for example, is detected by the series

capacitances As (one fixed plate on each side of the sensing mass). These plates form one

branch of a capacitive bridge in which two additional reference capacitors form the o)ther

branch. The bridge is pumped by a quartz oscillator at a stable frequency of 10-20 _Hz,

reducing the relevant noise temperature of the preamplifier. The difference betweent the

output signals from capacitors i and 2 is amplified by a low-noise preamplifier, sent to a

lock-in amplifier for phase-detection, and then to a low-pass filter.

5



Thecrosssectionsof theellipsoidsof inertia aboutthespin axisof the instrumentare
circularsoasto minimize,within theconstructiontolerance,the mass-momenttorques'dr.
In thedetectorshownin Figs. 2 and 3, the inner cylindrical massis mademostly of a
high-densitymaterial(e.g.,Platinum-Iridium)while theouter dumbbell-massis madeof
a low-densitymaterial(e.g.,Aluminum).

Figure 3 Interior of differential acceleration detector.

In order to achieve an experimental accuracy of a few parts in 1015 in about 25-30 s

integration time, the detector must have an intrinsic noise (expressed in terms of

acceleration) of less than 10 14 g/Hz _/2. Earlier analyses indicate that this level of noise is

attainable with an instrument refrigerated to a temperature close to that of liquid Helium

and with state-of-the-art low-noise preamplifiers.

Experiment Sequence and Communication Links

Figure 4 shows the preliminary timetable of the experiment sequence. The

experiment starts with the loading of the sensor into the vacuum chamber/cryostat about

2 weeks before the planned launch. This operation is then followed by the pumping

down of the chamber and the refrigeration of the sensor. After connecting the capsule to

the gondola and the balloon, the balloon is launched. The estimated time to reach altitude

is of order 3 hours. Upon reaching altitude, the attitude of the capsule is stabilized by the

leveling mechanism on the gondola, the sensor is spun up, and the dynamics of the

system is analyzed. When the dynamics is within the acceptable bounds, the capsule is

released from the gondola and the sensor is released from the top of the chamber/cryostat

immediately afterwards. The science data is taken during the free-fall phase in which the

sensor spans the length of the chamber. Shortly after the sensor has reached the bottom

of the capsule, the blut (first stage of the deceleration system) is released and, when the

speed has decreased below the required value, the parachute is deployed. The chamber is

vented before the capsule hits the surface/water and the locator beacon is turned on.
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Figure 4 Preliminary timeline of experiment

Figure 5 is a schematic of the communication system between the ground, the

gondola and the capsule through radio links and the communication between the sensor

(during free fall) and the capsule through an infra-red link.
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ANALYSIS OF FREE FALL PHASE

The free fall time of the instrument package inside the capsule can be computed after

considering that the capsule is slowly decelerated by the air drag while the instrument

package (after release) moves inside the vacuum chamber at low relative speed and

consequently it is unaffected by air drag (it is indeed in flee-fall conditions).

Free fall time

The free fall time and vertical size of the vacuum chamber/cryostat can be computed

from the equations of motion of the instrument package in free fall and the capsule in

decelerated fall. The equations of motion are as follows:

ZI --g

£2 = g- l-_--CoSp_ _
2m 2

(1)

where z is the vertical distance from the time of release (the subscript 1 stands for

instrument package and 2 for capsule), S is the frontal cross section of the capsule, CD the

air drag coefficient of the capsule and p = f(h) is the air density with h the altitude above

the Earth's surface. Equations (1) can be solved analytically only if CD is assumed

constant and the atmospheric density exponential. We will not spend time on the analytic

solution because it is valid only for relatively-short drops.
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Figure 6 Atmospheric density in the stratosphere per US Standard Atmosphere 1976
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After adoptinga densityprofile from theUS Standard1976AtmosphericModel (as
shownin Fig. 6) theexponentialfit of thedensityfor thealtitudesof interestis:

p = Poe-h / H (2)

Where H is the scale height, P0 is the reference density which is taken at the Earth's

surface and h the altitude above the Earth's surface. The relative distance can be

obtained as the double integral of the acceleration difference between the capsule and the

instrument package S£ = z2 - _/_ which is equal to the deceleration of the capsule due to

aerodynamic drag:

1 PO ('-h o)/H 2_2 (3)

where [3 = m/(CDS) is the frontal ballistic coefficient of the capsule, hu is the drop

altitude, z -- (l/2)gt 2 the distance traveled by the capsule and g the Earth's gravitational

acceleration. The drop velocity of the capsule is assumed equal to the free fall velocity gt

only for the purpose of computing the air drag deceleration (which is a valid

approximation at high altitudes).

The air drag coefficient CD is fairly constant in the non-compressible regime but then

it grows substantially with the Mach number for speeds approaching the transonic regime

as shown in Fig. 7 for an aerodynamically-shaped cylinder with fineness ratio D/L = 5 =

0.25. The Mach number M is the ratio between the actual speed of the capsule and the

speed of sound at the local altitude:

where R = 287 J/(kg-K) is the gas constant of air, T the local air temperature and _, -- 1.4.

The Mach number vs. the drop time is shown in Fig. 8 together with the drop distance vs.
time.

As a result of the functional dependence CD = f(Mach), we can separate the ballistic

coefficient into two components as follows:

,6 = N(l+ (5)

where [3o = m/(CD0 A) is the low-speed ballistic coefficient (i.e., its minimum value) and

AD is the fractional variation of the ballistic coefficient due to the increase of the Mach

number.
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text)
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Figure 8 Mach number and capsule drop distance vs. time

After taking into account the functional dependence Co = f(Mach) and integrating

eqn. (3) twice for different values of the ballistic coefficient, we obtain the numerical

results shown in Fig. 9, for a fineness ratio 6 = 0.25, a drop altitude of 40 km and a (low-

speed) ballistic coefficient 13oranging from 2000 kg/m 2 to 10000 kg/m 2.
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The numerical results clearly indicate that it is possible to attain a free fall time between

25 s and 30 s with very reasonable lengths of the chamber and capsule. Appropriate

values of the (low-speed) ballistic coefficient in the range of greater interest of 6000-

10000 kg/m 2 can be readily obtained with capsule masses <1500 kg and external

diameters smaller than 1.8 m. Designs options will be investigated later on in this report.
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Figure 9 Relative distance for various initial ballistic coefficients
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For completeness the deceleration of the capsule caused by air drag is shown in Fig. 10

for 130= 6000 kg/m 2. Figure 11 depicts the limit velocity and the capsule actual velocity

vs. altitude for the same case. The limit velocity is the velocity at which the gravitational

and air drag force are equal and, consequently, for a limit velocity much greater than the

actual velocity the air-drag deceleration is very small.

Effect of Wind Shear

The horizontal velocities of the capsule and the instrument package (attached to the

capsule) are the same at the start of the fail. The inertial horizontal velocity is determined

by the rotational velocity of the Earth at the latitude of capsule release and by the local

wind. The former (which is much bigger than the latter) simply makes the falling bodies

follow a parabolic trajectory rather than a fall along the local vertical. The maximum

lateral displacement is of order a couple of hundred meters over a fall distance of 4.4 km

which is consistent with a 30-s fall time. It is also worth pointing out that this lateral

displacement does not generate any acceleration on board because the displacement is

due to an initial non-null velocity and not to external acceleration acting on the falling

body.

The diameter of the capsule is important for tolerating vertical gradients (wind shear)

of the lateral wind without the need for a propulsion system to compensate for their

effect. The balloon will move at the speed of the local wind once the floating altitude has

been reached, i.e., the capsule will be at zero relative speed with respect to the local wind.

If the wind vertical profile were constant, the capsule and the instrument package would

move laterally during the fall with the same initial lateral velocity and hence maintain the

same lateral distance with respect to one another. But, if the wind vertical profile

changes, the capsule will experience a lateral force that will change its lateral speed while

the instrument package will not experience such force.
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The lateraldisplacementy of the capsule due to the wind shear V z = 0V/0z over the

vertical drop distance (Z = l/2gt 2) is as follows:

1 3
y - v<2 (8)

30fit g

where 9 is the atmospheric density, [3_= m/(Cv_St) is the lateral ballistic coefficient of the

capsule, S, the lateral area of the capsule, and g the Earth's surface gravity. Equation (8)

is simplified because the atmospheric density has been assumed constant over the drop.

The equation, however, provides a good estimate of the lateral displacement of the

capsule due to wind shear after adopting the average value of the density along the drop.

After calling S the frontal area of the capsule and assuming that CD, = 10CD, S, -- 3S/(rtS),

which are valid in approximation for a cylinder with aerodynamic nose and tail, we can

relate the lateral ballistic coefficient to the frontal (low-speed) ballistic coefficient as
follows:

rr8 (9)fll = -26/70

Consequently, eqn. (8) yields:

1 _Z 3
- V_2

Y g
(10)
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Fort5 = 6x10-3kg/m_(i.e., averageatmosphericdensitybetween40 km and 35 km of
altitude),Vz = 0.005sl, and5 = 0.25,we obtaintheresultsshownin Fig. 12. A checkof
theaccuracyof eqns.(8) and (10) wasalso madeby meansof numerical integrationof
the equationof lateral motion after assumingan exponentialair density profile. The
displacementerror is lessthan5%by usingtheaveragedensityvalue. The valueadopted
for the wind shearof 0.005 s-_is equivalent to a vertical gradientof 10knots per kin.
This value is twice as high asthe maximum wind shearreported'_ for the Air Force
balloonbaseat Holloman,New Mexico.

The lateral displacements due to wind shear are relatively small for rather
conservativevaluesof wind shear,free-fall times andballistic coefficients greaterthan
6000 kg/m2,which areeasy to obtain. Theseresults show that there is no needfor a
thruster systemto compensatefor the effect of the lateral wind acting on the capsule.
The geometry and massof the capsulecan be chosenin a way to accommodatethe
presenceof wind shear.Furthermore,if theballoonis launchedduring theperiodically-
occurringwind reversaltimes (in April-May andSeptember-October)the vertical wind
gradientis muchsmallerthanthevalueadoptedfor thecomputationsshownhere.

Thecapsuledisplacementdueto wind shearhasto be takeninto accountwhencomputing
theinternal diameterof the capsule(wherethe instrumentpackagefalls). However, it
will be shownlater on that other factors(e.g., gravity gradients)aremore important in
determiningthecapsuleinternaldiameter.

15



SCIENCE CONCEPT ANALYSIS

The error analysis has been extended with respect to what is reported in Ref. XV_to

include a thorough analysis of the gravity gradient generated by the distributed mass of

the capsule, the concentrated masses on board the capsule, and the Earth's mass for

generic positions and orientations of the sensor. The acceleration noise inside the capsule

has also been revisited after considering that in the new reference design (see later on) the

chamber is fully cryogenic. The intrinsic noise components of the detector (Brownian

and preamplifier noise) were also recomputed based on new information from the IFSI

laboratory. As a results of these new analyses, requirements have been derived for: (a)

the mass distribution of the capsule; (b) the tolerable mass and location of equipment on

board the capsule; (c) the orientation of the sensor during free fall and the centering of the

two sensing masses; and (d) the characteristics parameters of the detector that affects its
intrinsic noise level.

Acceleration Noise inside Capsule

The experimental package moves at very low speed inside the capsule. Consequently,

the residual gas inside the vacuum chamber produces a minute force on the free-falling

package with a frequency content centered at f = l/te s-_ where te is the free-fall time. This

gas thus affects the acceleration of the instrument package in a frequency range well

removed from the signal frequency. The acceleration, as a function of pressure inside the

chamber, is as follows:

a o - C°A V2p (11)
2m RT

where A and m are the frontal area and mass of the instrument package, respectively, V

is the maximum velocity of the instrument package with respect to the falling capsule, R

is the gas constant, T the temperature of the residual gas, and p the pressure inside the

chamber. Because of the new reference design (see later on) with a fully cryogenic

vacuum chamber, the residual gas in the chamber is refrigerated Helium. After assuming

CD - 2.2 (for a free-molecular regime), A - 0.1 m 2, m = 30 kg, V = 0.5 m/s (obtained by

integrating eqn. 3 once up to 30 s), R = 2078 J/(kg-K), T -- 5 K, and p = 10 .6 mBar, eqn.

(11) yields aD = 10 t2 g. The spectrum of this acceleration is centered at a frequency

0.033-0.05 Hz for free-fall times tf in the range 20-30 s. Consequently, the magnitude of

the acceleration at the signal frequency fs, which is in the range 0.2-0.5 Hz, is well

smaller than 10 _2 g. This acceleration is a common-mode acceleration which is further

reduced by the common-mode rejection factor (CMRF) of order 10 .4.

Furthermore, the vacuum strongly attenuates the propagation of perturbations from the

walls of the capsule to the free-falling instrument package. The estimate of the

acceleration at the falling instrument package produced by the vibrating walls of the

capsule are based on the experimental data measured on board the system Mikroba _.

This system shares the fall from a stratospheric altitude; it is not, however, a free-falling

experimental package inside the shielding capsule. In Mikroba, the measurement
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packageor experimentis solidly attachedto thewalls of thefalling capsule. Moreover,
Mikroba is not propelled during the first 30 s (like our experiment) although it is
propelleddownwardsduring thenext30 s. Oncethemagnitudeof theaccelerationat the
walls law,HIis known, the magnitudeof the accelerationat the falling package[a[canbe
readily computedas explained in the following. The motion of the vibrating walls
increasethekinetic energyof thegasmoleculesabovethe thermalvelocity. Thekinetic
energyvariationis thenexpressedasa pressurevariation Ap of the gas after equating the

increase in kinetic energy to the work done on the gas molecules by the vibrating walls.

We then assume, conservatively, that the pressure perturbation Ap acts on one side only

of the instrument package in order to compute an upper bound of the acceleration

disturbance imparted to the package. The upper bound of the acceleration at the

instrument package is as follows:

lal = A---_PluwauI - Ap law.t_ [ (12)
mV m(OV
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. MIKROBA 6 .......
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Figure 13 Acceleration measured on board the Mikroba capsule (with accelerometer

solidly attached) during the fall [Kretzchmar, 1999]

In equation (12), A and m are the cross section and mass of the instrument package, v

is the thermal velocity of the residual gas, a and aw,,u are the accelerations of the package

and the wall, respectively, p is the pressure inside the capsule, uw,H = a_an/0-1 is the velocity

17



andcotheangularfrequencyof thevibratingwalls. If, for example,p = 10 .6 mBar and the

temperature of the gas inside the capsule is slightly higher than LHe, we obtain an

attenuation factor a/a,,._, = 6x10 "° at the signal frequency of our experiment (-0.5 Hz). In

other words, the high vacuum provides an excellent attenuation of the wall vibrations.

The capsule walls do not necessarily vibrate at the signal frequency of the instrument.

The cryostat will be designed with structural frequencies much higher than the

experiment signal frequency. However, in this early stage of the design and for

conservativeness, we assume that the wall acceIeration has a component at the signal

frequency with an intensity equal to the largest magnitude of the acceleration recorded on

Mikroba during the first 30-s of fall, that is, aw,, < 10 .4 g (although not very visible in Fig.

13). We then obtain an acceleration at the instrument package of order !0 -13 g under

rather conservative assumptions. Consequently, the free-falling capsule reduces the

acceleration noise to values unmatched by any other Earth-based drop facility and

comparable to values achieved on board the Triad drag-free satellite _'_i_.

The acceleration components above are common-mode-type (i.e., they affect equally both

sensing masses) thus they can be further reduced by the common-mode rejection fact of

the differential accelerometer. With a typical value of 10-4 for the CMRF, the influence

of these accelerations on the differential measurement is made negligible.

The acceleration noise components produced by the residual gas in the capsule are

proportional to the pressure inside the capsule. The pressure can be reduced in

successive flights if, for any unanticipated reasons, its influence on the measurement

proves to be greater than expected. It is, in fact, well within the state of the art to obtain

pressures at room temperature as low as 10 .8 mBar in large volumes.

Internal noise of detector

The most important internal noise sources for a high accuracy mechanical detector like

the one proposed for this WEP test are: (1) preamplifier noise; and (2) thermal noise

(Braginsky, 1974'_; Giffard, 1976"_). The combined effect of these two noise

components upon the acceleration spectral density Sa of the detector's output is given by

the following equation for an instrument with the measurement frequency smaller than

the resonant frequency o30, a measurement bridge pumped at the frequency O3p (of

typically tens of kHz) and a preamplifier that matches the transducer impedanceXX_:

I ( "_-]1/ 2Sa : I 4kBo9 o T+ 7., 2o90 I[ g/'_

g [. m_y \Q flwe)_J
(13)

In equation (13), the two terms in round parentheses correspond to the Brownian noise

and the preamplifier noise, respectively; o3O is the detector resonant frequency; kB the

Boltzmann's constant; T the ambient temperature; Tn the preamplifier noise temperature;

Q the quality factor; rneff the effective mass of the sensing mass; and [3 the

electromechanical transducer factor. The effective mass is used to convert a rotation of

the sensing mass into a translation of equal energy. Its relationship to the mass m is: meff
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= m(rh/l)2 whererh and I are, respectively, the radius of inertia and the lever arm with

respect to the rotation axis of the sensing mass. With the geometry of the sensing masses

in our detector meff -- 1.8m.

Clearly, from eqn (13), we see that the sensitivity of the detector increases by

decreasing the resonant frequency and the temperature, and by increasing the mass of the

sensing masses and the Q-factor. Liquid He (4.2 K) refrigeration will be used to provide

low Brownian noise and a high Q-factor. These are necessary conditions to achieve the

desired measurement accuracy. In order to derive requirements for the detector, we

assume that the contribution of the Brownian noise is about equal to the contribution of

the preamplifier noise. In this case, if we set our experiment accuracy goal to a few parts

in 10 -15(with 95% confidence level and a 20-s integration time) each one of the two noise

components should be smaller than 6x10 15 g/_f_. These noise requirements imply the

following (see also the section on Requirements Development):

T < 10 K; T, < 60 mK; m > 5 kg; co0/Q < 2n/105 rad/s (14)

These requirements do not exceed the state-of the-art but they do require a very

careful construction of the detector with low dissipation and the use of very-low-noise

preamplifier. Key quantities like the Q-factor at low temperature and the preamplifier

noise will be measured experimentally by our partners at IFSI once a prototype

laboratory detector is built. Noise contributions other than the intrinsic noise components

of the detector should be kept at a lower level in order to make them smaller than the

intrinsic noise.

Gravity Gradients

Capsu.le Gravity Gradients

The gravity gradients generated by the distributed mass of the chamber/cryostat and

their effects on the differential measurement are analyzed in the following for a generic

position of the detector inside the capsule and a generic orientation of its spin axis with

respect to the gradient field.

Gravity gradient for a mass distribution with cylindrical symmetry

For a mass distributed with cylindrical symmetry, the resultant gravitational

acceleration has two components:

az= acceleration component along the cylinder axis

aT= acceleration component along the cylinder radius
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Figure 14 Reference frames for gravity gradient analysis

After erecting a Cartesian reference system xyz as

components of the gravity gradient tensor are computed
transformation formulas:

depicted in Figure 14, the

according to the following

dr = cos(O), dr - r . sin(O), dO

dy = sin(O), dr + r . cos(O), dO

da x = cos(O), da r - a r • sin(O), dO

day = sin(O), da r + a r •cos(O), dO

Setting 0 = 0 and indicating the spatial derivative with a second subscript:

(15)

a x _ at.

ay =0

and

a x3 ¢ _ art

axy --0

a_, = a r /r

arz = a_ = a_

a_z =az_, =0

Hence the gravity gradient tensor has the form:

.._

a;r 0 ar- ]
ar/r 0

' a rz 0 a zz

(16)

(17)
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As aresult of theLaplaceequation,thetraceof thegravity gradienttensoris equalto
zero,thatis

art + a r/r = -a_ (18)

In the singular case of r = 0 the limit calculation yields:

Iar_ 0 0 ]F(r=o>=L arr 00 -- 2a,.r

(19)

Gravity gradient matrix of a rotathzg body

In general a gravity gradient matrix has the form:

r = Fyzl (20)

r zl

The rotated matrix r' after a 0 = cot rotation is:

F'= RoFR_ (21)

where R0 is the rotation matrix and Ro T its transpose.

After a rotation about an axis (i.e., the x' axis), the rotated matrix has four components

modulated at co, four components modulated at 2co and one component that is not

modulated.

The co-modulated components of the transformed matrix are:

(22.1)

(22.2)

F[2 = F_ = Fxz sin(c0, t) + F w cos(co- t)

1"1'3= _l = Fxz cos(co, t) - F,.vsin(co, t)

where x' = 1, y' = 2, z' = 3. In summary, the off-diagonal components F'12 = F'21 and

r' 13 -" r'31 of the gravity gradient matrix produce components that are modulated at the

rotation frequency.
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Gravity gradient matrix projected onto body axes

In a general case the body reference frame placed at the CM of a sensing mass of the

detector can be identified with respect to the cryostat frame by means of 3 successive
rotations as follows:

1 - Rotation +c_ around z axis (azimuth rotation)

2 - Rotation +[3 around y' axis (elevation rotation)

3 - Rotation +cot around x" axis (spin rotation)

In the computation of gravity gradients, these rotations can either be rotations of the

sensing mass with respect to the cryostat or, equivalently, rotations of the cryostat with

respect to the sensing mass. In the former case, and solely for the reason of pointing out

a typical geometrical situation, the first and second rotations could, for example, be

caused by the detector dynamics during free-fall (e.g., precession of its body axes) while

the third rotation is the cot rotation of the detector about its longitudinal axis aimed at

modulating the signal.

Clearly, we are mostly concerned about the components of the gravity gradient matrix

that contain a frequency co equal to the modulation frequency of the signal. We can

choose the body axis y' -- 2 to coincide with the sensitive axis of the accelerometer and,

consequently, we are only concerned with the component F'2_ of eqn. (22.1). In general,

the moduli of the two components F'12 and F' 13are the same and they can be written as

follows:

Z = _/F_ 2 + Fxz2 (23)

After rotating the original matrix by two rotations o_ and [3 (where c_ is the azimuth of the

spin axis with respect to the radial and [3 is the elevation with respect to the capsule

equatorial plane) the expressions of F×y and Fxz in eqn. (23) are as follows

F_y = k 1sin(fl)sin(a)- k 2 cos(fl)sin(2a) (24.1)

Fxz = k3 sin(2fl) + k 1cos(a)cos(2/3) + k 2 sin(2/3)cos2(a) (24.2)

k I = axz (24.3)

1

k 2 = -_ (axx - ayy ) (24.4)

1

k 3 = -_ (ayy -- azz) (24.5)
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and wherethe a,jare the matrix componentsbeforetherotations arecarriedout. In the
caseof a bodywith cylindrical symmetryandfor cylindrical coordinates,eqn.(t6) yields
axx= %, ayy= _r, azz= azz,axz= a_andtheothercomponentsarenull.

Using numericalanalysisof eqns.(24)andtaking into accountthat insideacylinder
k2is alwaysat leastoneorderof magnitudelessthank_andk3,we find thatthemaximum
valuefor Z occurs for ct= 0. This result implies that the maximumdisturbanceof the
capsulegravity field on the differential accelerometeris producedwhen the capsule
movesradially with respectto thesensor(seeFigure 15) in suchaway that thespinaxis
is orientedalongthe radiusof thecylinder throughthe sensorandthe capsulehasbeen
displacedradially with respectto thesensor(e.g.,by wind shear).

Figure 15 Geometryof sensorandcapsule(viewed from the top) for strongestgravity
gradientaffectingthemeasurement

On the oppositeend, if the motion of thecapsuleis suchasto keep c_close to 90",
that is thespin axis is orthogonalto theradial, thedisturbanceis minimum. In anycase
sincethetranslationalmotionof theexternalcapsuleis notpredictablenorcontrolled,the
worst conditionis analyzedsettingctequalto zeroandvaryingthe angle13.After doing
soeqns.(23) and(24)yield:

Z = (k3 + k2) sin(2,6) + kl cos(2fl) (25)

Equation (25) summarizes the disturbances induced by the cryostat mass modulated

at the measurement frequency. This equation is important for the cryostat/capsule design.

The variations of the quantities kl, k2, k3 inside the cryostat for different shapes and sizes

are analyzed numerically in the following subsection.

Variation of kl, ke, ks in the cryostat/capsule

A numerical code has been developed in Matlab to compute the gravity gradient

matrix inside a distributed, massive cylinder. The program, which uses a very large (of

order 104 ) number of mass points, can map the desired components of the gravity

gradient matrix inside the enclosed surface. The program has been exercised for a
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number of cylinders with different H/D ratios (where D is the diameter and H the height)

and different caps. Each run takes a couple of hours on a Pentium III PC.

Cylindrical cryostat without caps

We first analyzed the gradient field for various eases of cylinders with various H/D

(height over diameter) ratios to conclude that the gradient field is strongly reduced (for

the components of interest) for H/D > I

The following results are for a cylinder of uniform mass distribution with the following
characteristics:

Cylinder mass = 500 kg; Dimensions: 1 m (dia) x 1 m (height)

z

I x=r

I
Figure 16 Schematic of cylinder and reference frame

Vertical profiles at r = 0 (along centerline)
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Figure 17 All components of gravity gradient along a vertical profile at r = 0 (units are

fr_ = ma,_ in kg/s 2 = s 2 for l-kg test mass)
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Vertical profiles at r = 10 cm
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Figure 18 All components of gravity gradient along a vertical profile at r = 10 cm (units

are f,z = marz in kg/s 2 = s 2 for 1-kg test mass)

Vertical profiles at r = 20 cm
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Figure 19 All components of gravity gradient along a vertical profile at r = 20 cm (units

are f,z - marz in kg/s _ = s 2 for 1-kg test mass)
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Vertical profile atr = 30cm
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Figure 20 All components of gravity gradient along a vertical profile at r = 30 cm (units

are f,z = ma,z in kg/s _-= #2 for 1-kg test mass)
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Figure 21 All components of gravity gradient along a vertical profile at r = 40 cm (units

are f_ = ma,, in kg/s _ = s2 for 1-kg test mass)
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The following is a contour plot of the ka component inside the cylinder and the radial

profiles of this component along radii at various distances from the cylinder" s equatorial

plane.

kl (1/s2)

x (m)

Figure 22 Contour plot of capsule gravity gradient component k, = a_=(s 2) for a cylinder

with H/D = l-m/1-m
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z = 10cm (abovecylinder's equatorialplane)
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(continued)
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z - 30cm abovecylinder'sequatorialplane
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Figure 23 Gravity gradient (a_z = kt component) for latitudinal sections at different

distances above the cylinder's equator (units are f= = ma, z in kg/s 2 = s -2 for 1-kg test mass)
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Figure 24 Contour plot of capsule gravity gradient component a= (s 2) for a cylinder with

H/D = 1.5-m/1-m

Figure 24 shows the contour plot of the kl = a_ component for a cylinder with HiD =

1.5-m/1-m. Note that the strength of the gravity gradient in the area of interest (near the

cylinder's centerline) is strongly decreased thanks to the lengthening of the cylinder in

the vertical direction.
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As thecylinder is stretchedalongthevertical,theeffectof the cylinder edges (which

produce stronger gravity gradients) is smaller the closer the detector is to the cylinder's

centerline, where the detector free falls. In the following plots we will show all the

gravity gradient terms kt, k2 and k 3 (modulated at to) inside a cylinder with dimensions

close to those that we are considering at the present stage of development of the design.

(continued)
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Figure 25 Cylinder without caps and H = 2.3 m; D = 1.2 m; overall mass = 500 kg.
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Variation of ki. kz and k a along free-fall trajectorie.s

Based on the evaluation of the dynamics of the instrument package relative to the

capsule (see also later on), we can map trajectories of the instrument package inside the

capsule and evaluate the maximum values of the gravity gradients that the detector will

experience during the fall.

It is important to evaluate the strength of the gravity gradient field inside the cryostat

along a worst-case trajectory of the instrument package (sensor) that moves with respect

to the cryostat/capsule during free fall. Based on worst-case wind shear conditions the

trajectory (in z-r coordinates) of the sensor with respect to the cryostat can be expressed
as follows:

Z: Z 0

r=r o

a tb exp(ct2)

1%

dg 2l 6
+ (Z-Zo)siny

87r/30

(26)

with a = 0.149636, b = 0.001692, c = 3.084, and d = 6x10 7 (see section on Optimization).

In equation (26), 130is the low-speed ballistic coefficient, z0 and r0 are the coordinates of

the point of release in the cryostat coordinate frame and )' is the angle of the capsule's

longitudinal axis with respect to the local vertical which (at this stage of the project)

represents a reasonable upper limit for the verticality error of the capsule during the fail..
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Cylindrical cryostat with flat caps
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The Matlab routine has been modified to include

cryostat caps of different shapes. The routine

creates a two-dimensional mesh of point masses

uniformly distributed on the average surface of

the cylinder and its caps. In the case of flat caps
the mass distribution results in a closed

cylindrical surface of height H and diameter D.

The gravity gradient field has been mapped on

the z-x plane where x coincides with the

cylinder's radial and z with the longitudinal axis,

as far as s = 10 cm from the top and bottom and c
---20 cm from the side walls.

The point of release P lies on the symmetry axis of the cylinder and at d = 40 cm from the

top. The sensor trajectory obeys eqns. (26) with 13o = 10000 kg/m _ and the capsule

verticality error y = 5 ° has been conservatively assumed to produce a constant, lateral

displacement of the sensor in the same direction of the wind shear. The other parameters

in eqns. (26) also represent a worst-case scenario for lateral displacements. The key

quantities kl, k: and k3 are plotted as contour plots on the x-z plane in Figs. 26.

1

0.8

0.6

(continued)
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Figure 26 Contour plots of k_, k2, k3 for a cryostat with flat caps and H = 2.3 m, D = 1.2

m and total mass = 500 kg.
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The quantities k], k 2, k3 are then computed along the trajectory of the instrument

package and the power spectral densities are computed over the free-fall time of 26 s.

Results are shown in Fig. 27 where the peaks with frequency 1/tf = 1/26 Hz due to the

free-fall duration, are clearly visible in the spectra.
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Figure 26 shows that the quantity k 3 is relatively larger than k_ and k 2. Consequently,

eqn. (25) poses a limit for the angle 15that defines the capsule attitude with respect to the

spin axis of the sensor. After neglecting the much smaller k 2 (and kl which depends on

cos(215)) we find that the maximum allowable 13is:

(27)

With a Z,,x of l0 "9 S"2 and the results shown in Fig. (27), we obtain a limit of 4.8 deg for

15,which is a relatively large value.

Cylindrical cryostat with hemispherical caps
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A cylindrical cryostat with hemispherical caps has also

been analyzed. The gravity gradient distribution has been

mapped on the x-z plane, where x is the cylinder's radial

and z the longitudinal axis, between the base of the upper

and lower hemispheres and as close as c = 20 cm from
the side wall.

The release point P (and starting point for the simulation)

lies on the symmetry axis of the cylinder and at the base

of the upper hemisphere. The sensor trajectory is the

same as in the previous case.
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Figure 28 Contour plots of k,, k 2, k 3 for cryostat with hemispherical caps and H = 2.5 m,

D = 1.2 m and total mass - 500 kg.
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Figure 29 kl, k:, k 3along the trajectory and their spectra.

The analysis carried out here and additional results not shown in this report lead to
the definition of a stand-off distance of about 40 cm between the sensor CM and the

heavy part of the cryostat walls to provide 0_-modulated components of the gravity

gradient that are sufficiently low for the sizes and masses relevant to this project.
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Earth's gravity gradient

We compute here the Earth's gravity gradient tensor and we analyze the effects of

Earth's gravity gradient components on a rotating detector with a generic orientation of

its spin axis with respect to the gravity gradient field. Let us consider the gravitational

potential per unit mass at a point (x, y, z) with respect to the detector's center of mass:

V = ,u (28)

_-__ Rx )2 + (y _ Rr )2 + (z_ Rz)2

where Rx, Rv, Rz are the components of the radius vector R from the Earth's center to the

detector's CM (in which Z is the local vertical) and g is the Earth's gravitational

constant. After projecting about the detector's body axes in which x is the spin axis and

calling 0 = cot the rotation about the spin axis and _ the elevation angle of the spin axis

with respect to the horizontal plane:

R_ = R(t)sin(_0)

Ry = R(t)cos(¢) sin(cot)

Rz = R(t) cos(_b)cos(cot)

(29)

The gravitational acceleration in body axes is obtained by substituting eqns (29) into

eqn. (28) and computing the gradient:

(gx,gy,g: =-VV (30)

The components of the gravity gradient matrix in body axes are finally computed by

taking a further derivative with respect to the spatial coordinates, to yield

]A '9

gxx = -_-7 [-" + 3c°s2(0 )]
(31.1)

gxy = 3-_7 sin(tot)cos(0) sin(0)
(31.2)

gxz = 3 _ cos(tot)cos(0) sin(0) (31.3)

gyy = -_-; [1 - 3cos2(0) + 3cos2(tot)cos2(0)]
(31.4)

gyz = 3-_; cos(tot) sin(tot)cos 2(0)
(31.5)

P 3cos2(ex)cosX(O)]
g= - -_-;;[-1 +

(31.6)
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Here again,the componentsmodulatedat coare gxy and gxz (in which x is the spin

axis). In other words, if the spin axis lies on the horizontal plane, the detector only sees

components modulated at 203 but if it is not, components modulated at the frequency

co appear. The strengths of these components are proportional to the tilt angle with

respect to the local horizon. Note also that the effect of the Earth's gravity gradient on a

rotating body can be readily applied to the space-based tests of the Equivalence Principle

in which the only difference from the balloon-based experiment is the slightly larger

value of the radial distance from the space-based sensor to the Earth's center.

An alternative way of portraying the origin of the 03-modulated components of the

Earth's gravity gradient field is by considering the following. If the z-axis of the body

reference frame is directed along the local vertical (that is the spin axis x of the sensor is

on the horizontal plane) then the gravity gradient tensor is

F(z_r ) - R3 -1 (32)
0

The tensor does not change under a rotation about the z-body axis due to its structure

which reflects a symmetry about the radial line. Consequently, we can choose the

azimuth orientation of the spin axis at will (let us call it the y-body axis). A rotation q_

about an axis perpendicular to the spin axis produces terms g'xz = g'zx in the transformed
tensor:

g 'x_ 0 g ' z ]_- o
R , 0 g'z_J

(33)

where

g'_= -1+ 3sin 2

g' =-l+3cos 2
ZZ

g'x_ = g-_ = -3sin Ocos ¢

(34)

The g'xz and g'zx terms are subsequently modulated at the frequency co by the rotation

0 = 03t about the spin axis as shown previously.

Since there are terms modulated at the signal frequency 03, we have to make sure that

they are kept lower than the accuracy with which we want to measure the signal. From

the detector point of view, there will be requirements imposed on the centering of the

sensing masses and their attitude with respect to the Earth's gravity field as shown in the

following section.
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DDi_sLurbancesinduced bY concentrated masses on board the capsule

Let us consider the reference system (x, y, z) fixed to the sensor with origin at the

center of mass and with x oriented along the spin axis and let us indicate the position of a

point mass mp in proximity of the sensor in spherical coordinates (&Y,P) (see Fig. 30).

z Y

_" "_" """ '_"" mp

Figure 30 Geometry of the sensing mass and reference frame

The position of mp is then expressed as:

Xp = p cosS cosy

yp = p sin _ cos y

Z p = p sin y

(35)

The gravity gradient matrix at the detector due to the gravity field induced by a mass

point mp is:

3x - ,o 2 3xy 3xz

G.mp I 3yx 3x 2 _p2 3yz

rm,- L 3zx 3yz 3;-o
(36)

Considering a sensor that rotates with respect to a fixed point mass in its proximity

we obtain the two co-modulated components already shown in the previous paragraphs:

I-;2 ----I';1 = r13 sin(to, t) + 1"12cos(to, t) (37.1)

P P

1-'13 = I-'_1 = I"13 sin(to, t) - r_2 cos(to, t) (37.2)
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Themoduli of thetwo o_-modulatedgravitygradientcomponentsF' 12andF' i3arethe
sameandcanbeexpressedasfollows:

G. mp ]xl_- 5 (38)
X - p-_ +y2

which shows that the masses located on the plane y-z (i.e., x = 0) do not generate

disturbances with the same frequency as the measured signal. Substituting eqn. (35) into

(38) and extracting p yields the minimum distance for a point mass to produce a

disturbing gradient equal to or less than the critical gradient agg.max:

Pr_n =( G mP _zos6cos_4sin2 _cos2 7+ sin2Y/1/3_,agg-max
(39)

Setting a limit of 109 s 2 for areax we plot the locus f(p,y,8) = 0 of the points in space

with ag_ = agg.r_x in Figure 31 for a disturbing point mass of 1 kg. Next, meridian sections

(rotated about the z-axis by the meridian angle _5) of the same locus are plotted for

different values of the angle 8 in Fig. 32 where r is the radial direction.

Z

-0.7

y(m) 0 -0.4
0 -0.2

0.2 x(m)13.4

Figure 31 Locus of m-modulated gravity gradient component with strength = !0 .9 s2
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The previous analysis defines exclusion zones for concentrated masses on board the

capsule. In general, masses can be placed rather freely on the y-z plane (perpendicular to

the sensor spin axis). Masses lying on this plane generate only 2co-modulated components

whose strength only needs to be reasonably smaller than the upper bound of the dynamic

range of the sensor. The Earth itself produces such 2co-modulated components with a

strength equal to 3x 10 .6 s 2 that is well stronger than the sensor sensitivity (for realistic
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valuesof thesensingmassCMserrors),but is about3-ordersof magnitudelower thanthe
dynamicrangeof thesensor.For the2og-modulatedterm,theequivalentEarth is amass
of 22,500kg at 1-mor a 22.5kg at 10cm from thesensor.

Requirementsrelated to the m-modulated componentsare more stringent and,
consequently,we will concentrateon thesecomponentswhich havebeendealt with in
thisanalysis. In summary,concentratedmassesshouldbeplacedascloseaspossibleto
the y-z plane (perpendicularto the sensorspin axis). For massesaway from the y-z
plane,Fig. 33definestheexclusionzonesfrom thesensorfor differentmassValuesunder
theworstpossibleconditionof massesplacedonthe45° meridianplane.

Effect of Gravity Gradients on Differential Acceleration Measurement

The differential accelerometer consists (from the mechanical point of view) of two

sensing masses with ideally coincident centers of mass (CM). The equivalence violation

signal is measured as a differential displacement along the y-body axis of the sensor

which is orthogonal to the spin axis along the x-body axis. In reality the two centers of

mass (or more appropriately centers of gravity) do not coincide and CM, (i.e., the CM of

mass 2) is displaced by a position error vector _5with respect to CM_ as follows

(40)

We can place the body reference frame at CM_ and compute the differential

acceleration due to gravity gradients by simply multiplying the gravity gradient matrix in

body axis, that is

3%

aaz

--(r +r c
LS J

(41)

where F E, r 'c, 1-'M are the gravity gradient matrices of the Earth, the distributed capsule

mass and concentrated masses on board the capsule, respectively. Since the differential

accelerometer measures only the component along the y-body axis, we obtain finally:

M E C M E C M
g_ay = (Fy_ +r c +FCx)S x +(ryy+r_y+F¢y)Sy +(r¢z +ryz +r¢z )6z (42)

in which F:_, Fc , and F_,_ are the components modulated at the signal frequency m while

the other terms in eqn. (42) are modulated at 2o3. In conclusion, the disturbing

differential acceleration along y produced by gravity gradients can be expressed as
follows:

5O



(_¢/y < 3-_cos(d_)sin(¢)sin(wt)S x + [(k 2 + k3)sin(2fl)+ k I cos(2fl)]sin(cot)_ x

+ aM(W ) + fy(2W, ay) + fz(2W,_z)

(43)

where kl, kz, and k3 are the gravity gradient terms (see previous subsections) generated by

the capsule in the capsule-body reference frame, _ is the elevation of the spin axis with

respect to the local horizon, 13 is the elevation of the spin axis with respect to the

equatorial plane of the capsule, aM(to) is the to-modulated disturbing acceleration (in

functional form) produced by concentrated mass on board the capsule (see previous

subsection) and fy(2to, 5y) and fz(2to, 6z) represent all the other 2to-modulated components

which have been separated in eqn. (43) according to the centering error components.

Note that the 2to-components depend only on the centering errors 5y and _iz while the to-

components depend only on the centering error 6x. The less-than sign in eqn. (43) is due

to the fact that, on the right hand side of the equation, we have adopted the strongest

value of the to-modulated gravity gradient component of the capsule, that is, for c_ = 0

(see Fig. 15). Moreover, from the analysis of the capsule gravity gradients, we have

concluded that if we keep the sensor (at the CM) about 40 cm away from the heavy part

of the chamber/cryostat walls, the to-modulated gravity gradients are well below the

critical value of about 10 -9 s 2. Based on similar reasoning, we assume that the

concentrated masses on board the capsule are placed outside of the exclusion zones

(defined in the previous subsection) in order to keep them below the critical value. In

other words, an appropriate design and a careful mechanical construction of the sensing

masses (82 of order microns) will make the gravity gradient contribution of the capsule

and the concentrated masses on board the capsule negligible.

To attenuate the effect of the gravity gradient of the Earth we have to make sure that

the product sin(¢)cos(q)6xis sufficiently small. In other words we can trade the position

error between the CMs of the sensing masses along the spin axis 52 for the tolerable angle

of the spin axis with respect to the local horizontal. For small values of _, we readily

compute that for the first term on the right hand side of eqn. (34) to be smaller than, let

us say, 10 _ g, the product _Sx must be smaller than 0.1 deg-l.tm. This requirement must

be considered in the design of the detector, the release mechanism, and the capsule

leveling system of the capsule. The complexity of some subsystems can be traded for the

simplicity of other subsystems among those three.
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TItERMAL ANALYSIS]ISSUES

Following the procedure of the STEP project, we have estimated the pressure

requirement inside the detector casing (small vacuum chamber) for keeping the

radiometer effect and the damping due to residual gas to tolerable levels.

Effect of residual gas

A limit on the tolerable pressure difference Ap inside the instrument package can be

obtained by requiring that the acceleration a = AAphneff produced by the air piston effect

(dc signal) on the surface A of each sensing mass Xx_be at least three orders of magnitude

smaller than the dynamic range of the differential accelerometer. Consequently, for A =

0.012 m 2 and m,_= 9 kg, the tolerable pressure difference should be less than 10 -9 Pa (10
i_ mBar).

Radiometer effect

The maximum tolerable pressure is also related to the maximum allowable thermal

gradient through the radiometer effect, i.e., the acceleration produced by gas molecules

emitted from regions with different temperatures [Ref. x]. This effect is likely to produce

an acceleration error modulated at the signal frequency because, as the instrument

package rotates, it could face regions with slightly different temperatures. The

acceleration produced by the radiometer effect is a = p (AT/Ax)/(29T) [Ref. x] where p is

the pressure, T the temperature and 9 the density of the sensing mass. For 9 = 2800

kg/m 3 (Aluminum), p = 10 -9 Pa is required for an acceleration error of 10 -15 g and a

temperature gradient of 0.2 IGm.

A thermal gradient across the detector also affects the resonant frequencies of the

sensing masses through variations of: the Young's modulus of the material, the geometry

of the torsional springs, and the moments of inertia of the sensing masses. ConsequentIy,

a thermal gradient changes differentially the resonance frequencies of the sensing masses

and ultimately affects the common mode rejection factor.

The common-mode rejection factor is related to the temperature variation AT across

the detector as follows CMRF = Jot + CCE[AT where a is the thermal expansion coefficient

and c_E the thermal coefficient of the Young's modulus. For Aluminum at low

temperatures c_ << C_E, C_E - -3.5x10 4 K _ x,u_ while CMRF is required to be < 10 4.

Consequently, the tolerable temperature gradient for a 0.4-m-long detector must be

smaller than 0.7 K/re. This value is somewhat less stringent than the tolerable value of

the thermal gradient dictated by the radiometer effect and consequently is superseded by

the previous effect.

Thermal issues and design

Thermal issues, however, are not solved by simply meeting the thermal gradient

requirement and lowering the pressure. The experiment has two cold parts, that is, the

52



proofmassespluscasing(i.e., thesensor)andthepreamplifierandacomponentat almost
roomtemperature(insideits case),that is, theelectronicsboxwhich includesbatteryand
varioushousekeepingfunctions.

The sensorhasnegligible thermal dissipationwhile the preamplifier andelectronic
boxeshavenon-negligiblethermaldissipations. We needto evaluatethe following: (1)
cooling downtime for the sensorandpreamplifierbeforelaunchingthe balloon; (2) the
tolerabletemperaturedrifts of thedetector,thepreamplifierandtheelectronicsduring the
measurementphaseafter release;and (3) the tolerabletemperaturedrifts of the same
unitsbeforereleaseduringthecheckout phase.

Experimentaldatawasprovidedby ourpartnersatIFSI on thepowerconsumptionof
theunits involved andtheir sensitivity to temperaturevariations. Not surprisingly, the
sensorandthepreamplifierhavethehighesttemperaturesensitivity,of order 10.8g/K and
10.9g/K, respectively,followed by the electronicswhich is a few ordersof magnitude
less sensitive. If the two sensitivities quoted above are taken at face value, the
temperaturevariationover themeasurementtime shouldbe lessthan0.1 gK! In reality,
the sensorandpreamplifier will begroundedto thecryostattemperaturebeforerelease
and then they will rely on their own thermal inertia during the 25-30 s measurement
phase.Thetemperaturedrift is slow,with atime constantthatis typically two ordersof
magnitudebigger than the measurementtime. Since variations of less than gK are
unrealisticto obtain,thequestioncanbeput asfollows: how well an accelerationsignal
at theexpectedsensitivity canbeextractedfrom a slow varying background(dependent
on the temperaturedrifts) which increasesby severalorders of magnitude over the
measurementtime?

Answering this questionis important to define more realistic requirementsfor the
thermaldesign,in general,andfor solvingpoint #2 outlinedabove,in particular. In order
to answerthisquestionwehaveinvestigatedtechniquesof signalextractionfrom a noisy
signalwhichalsodrifts by avery largeamountdueto temperaturevariations.

This exerciseis not meantto beacomprehensivework on thetechniquesthat will be
adoptedfor extractingthesignal from noisebut ratherit is limited to the issuedescribed
previously. In summary,we havetakenasample0.5-Hzsignalwith a strengthof 2x10-is
g (at 95% confidencelevel), addedto a randomnoisewith -f_xl0 -15g rms and to a
double-exponential(other functions have also been tested)drifting accelerationthat
rampsup to an accelerationintensity manyordersof magnitudebigger than the signal.
Thedoubleexponential(or similar function) representsthedifferent heatingratesof the
sensorandthepreamplifierwith two differenttimeconstantsTC_andTCzwherewe have
assumedTC_> TC_to accountfor thesensor'sbiggerthermalinertia We havepracticed
abasictechniqueto extractthesignal,without assuminganyknowledgeof thefunctional
expressionof thethermaldrift, for increasingsteepnessof the thermalramp (that is the
ratesof changeof thetwotemperatures).

Fig. 34showsa conservativesituation in which the thermal-inducedaccelerationramps
up to 2x10-8g, that is, its maximum value is 7-ordersof magnitudebigger than the
expectedsignal. The signal could beextractedwith reasonableeaseby detrendingthe
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signal+ noise with a 6-order polynomial and computing the FFF of the detrended signal.

This extraction process would not succeed for much stronger thermal drifts, although no

additional effort was devoted to improving the process because the results obtained were

already satisfactory. After considering these results, we can establish thermal drift

requirements for the relevant units as follows:

Sensor temperature drift: < 0.0067 K/s (i.e., -0.2 K in 30 s)

Preamplifier temperature drift: < 0.017 K/s (i.e., -0.5 K in 30 s)

(44)

For the temperature of the electronic box we can safely assume that it is sufficient to

keep the temperature variation below a few degrees over a 30 s maximum free-fall time.
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Figure 34 Example of extraction of signal from random noise plus a strongly-dominant

slow-drifting acceleration noise (Temp-1 = sensor and Temp-2 = preamplifier).
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Preliminary Thermal Results

There are 3 elements that operate at different internal temperatures in the instrument

package, namely, the detector, the preamplifier and the electronic box. The detector

should be at the lowest possible temperature with an upper limit of 10 K. The Gallium

Arsenide FET preamplifier can operate from low temperature (> 10 K) up to room

temperature with slightly reduced performance at high temperature. The electronic box

must be kept close to room temperature. The three boxes also dissipate different amounts

of power. The power dissipated by the detector W_ is in the nW range which is

negligible. The power dissipated by the preamplifier and the electronic box are typically

W2 = 100 mW and W 3 = 500 mW which are both non negligible. A simplified thermal

scheme of the three elements is shown in Fig. 35.

Detector

-7
ml

Preamp. Electronics

W 2 W3

case m2 shields

Figure 35 Simplified thermal scheme

A preliminary thermal analysis was carried out by using a finite-difference thermal

analysis code to address the two more critical thermal issues, that is: (a) the cooling down

of the detector and (b) the temperature rise of the preamplifier during the measurement

phase.

Results of the cooling down are shown in Fig. 36 under different assumptions of

radiation and conduction through a cold strap with a conductance of 0.02 W/K

connecting the case of the detector to the cryostat. The most relevant results are those

shown in Fig. 36(a) while Figs. 36(b) and 36(c) represent cases that were run to assess the

relative contributions of radiation and conduction, respectively. As shown by Fig. 36(a)

the cooling time needed, with the cold strap, to reduce the temperature below 10 K is
shorter than a week.
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Figure 36 Temperatures of detector during cool down under various assumptions
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The second critical issue that we addressed is the temperature rise of the preamplifier

during free fail (i.e., the measurement phase). The preamplifier was singled out as more

critical, from the thermal point of view, than the detector because it has high power and

low mass while the detector has negligible power dissipation and higher mass. We

assumed that the preamplifier is at its desired temperature value (between 10-20 K)

before the instrument package release and that a thermal shield is interposed between the

preamplifier box, which is attached to a thermal radiator, and the detector.
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Figure 37 Temperature of preamplifier and thermal shield during free-fall phase

Fig. 37 shows the results for different thicknesses of the thermal radiator. Clearly, in

order to keep the temperature variation below 0.5 K during a 30-s time, a 1-cm (thick) X

20-cm (dia.) radiator is required. Additional thermal analyses will be performed to

compute temperature variations of the three connected boxes and, consequently, define in

more detail the thermal design beyond this preliminary analysis of critical issues.
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CAPSULE/CRYOSTAT DESIGN APPROACH

Introductory Remarks

During the early conceptual development of this experiment, we were focusing our

attention mostly on free-fall spans of a few meters to achieve free-fall time as long as

possible. This situation, however, precluded the use of a fully cryogenic capsule because

of mass considerations and pushed us towards the adoption of a small cryostat at the top

of the vacuum chamber to refrigerate the instrument before release. However, the small

cryostat creates additional problems which are highlighted by the previous analyses as

follows: (1) the small cryostat is a concentrated mass very close to the detector which

produces relatively strong gravity gradients; and (2) the instrument package spends most

of the free-fall time in the vicinity of the small cryostat and distances itself from the small

cryostat only in the later portion of the fall.
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Figure 38 Vertical motion of package relative to capsule for 130= 7000 kg//m 3 (shown

for distances < 1 m)

Fig. 38 shows clearly that the relative distance between the instrument package and the

capsule (for a typical _0 = 7000 kg/m 2) is less than 10 cm during the first 14 s, increases

to about 1 m at the 24 s mark and becomes greater than 3 m at the 30 s mark (not shown

in the figure). In other words, the small cryostat can not be small either from the point of

view of reducing the self-generated gravity gradients and also for allowing for lateral

motions of the capsule with respect to the falling package. The free fall time (once

several seconds are spent in attenuating the initial transient motion of the sensing masses

after release) affects the experiment accuracy only through its square root (i.e., a weak

function). Consequently, it is sensible to sacrifice a few seconds of free-fall time in order
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to maketheexperimentalareasufficiently shortto openup theoptionof afully cryogenic
vacuumchamberfor thedetectorto fall in.

Theseconsiderationsare formalized in thenext sectionby developingan optimization
processaimedat identifying the size and massof the experimentalchamberand the
capsule.

Optimization of Capsule Size and Mass

A design optimization would appear premature at this point of the flight definition study.

This optimization process, however, is aimed exclusively at evaluating consistently the

size of the capsule and its overall mass. The goal of the optimization process is to devise

a mathematical formulation for evaluating capsule sizes and masses that satisfy: (1)

geometrical/dynamical constraints and (2) engineering constraints. The first category

includes the constraints determined by the strength of the gravity gradient inside the

vacuum chamber (generated by the capsule mass itself) and from the motion of the

instrument package with respect to the capsule during free fall. The second category

includes size constraint due to transportability and handling of the capsule and also

minimum and maximum allowable mass. The minimum mass is related to the ability of

building a vacuum chamber that does not buckle under the atmospheric pressure while

the maximum mass is limited by the carrying capacity of the helium balloon.

The independent variables to work with (as it will become clearer in the following) are

the (frontal) low-speed ballistic coefficient of the capsule and the free-fall time. The

output variables are the capsule diameter and related capsule length, free-fall span,

cryostat mass, and capsule mass.

In more detail, we first need an expression of the free-fall span of the package inside the

capsule as a function of the ballistic coefficient 13oand the free-fall time Tf. The free-fall

distances were derived numerically because the relevant functions are not integrable.

Consequently, we have to fit the numerically-derived function over the two parameter

space ([30, Tf). The fitting was done successfully over the range of interest of the

parameters by starting from the analytical formulation that approximates the solution for

a constant ballistic coefficient and then evaluating the fitting coefficients for the general

case with variable CD. The two-parameter fitting process yields:

zf = aTf b exp(cTf 2)/t_ o (45)

where a = 0.149636, b = 3.084, and c = 0.001692 are the fitting parameters. The results

are accurate within a few percent for ballistic coefficients varying from 2000 kg/m 2 to

20000 kg/m 2 and free-fall times from 0 to 30 s.

The free fall vertical distance readily determines the minimum length of the

experimental chamber which must at least equal the free-fall span plus the vertical size

(outer diameter) of the instrument package, that is:

L,_, = rlzf + D (46)
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whereD is the outer diameterof the instrumentpackageand vl is a safety coefficient
(typically equal to 1.5) that takesinto accountthe uncertaintiesin estimatingthe drag
decelerationdueto therarefiedatmosphere.

The next step is to evaluatethe minimum internaldiameterof the chamber/cryostat
that canaccommodatethe lateraland attitudedynamicof the capsuleand alsoprovide
low valuesof the gravity gradientsalong the free-fall trajectory. In order to keep the
equationsmanageablewe adoptfor this analysistheconstantstand-offdistanceswhich
were derivedpreviously and boundaryvaluesfor the capsuleattitudedynamics,rather
than using integration of capsuledynamicsandon-line numericalcomputationsof the
gravity-gradient field (as done in the previous section). The goal is to compute a
minimum valueof the internaldiameterandexternaldiameter(wherethe two arerelated
through the cryostat thickness)that keep the free-falling packageclose to the capsule
center-line(far awayfrom thecryostatwalls) undertheactionof a maximumwind shear
andfor reasonableassumptionsaboutthecapsuleattitude(pitchor roll) dynamicsduring
the fall. The point abovecanbe translatedinto the following equationfor the external
capsulediameter:

De'_itn= 2(Ypi,c,, + Y,hear + Ygg + Ycryo) (47)

Yp_ch= zfsin(0m.x) where z_ is given by eqn. (45) and 0max can be interpreted as either a

limit value of the maximum pitch motion of an uncontrolled capsule or a requirement

imposed on the control system of the capsule attitude during the fall. The lateral

displacement due to wind shear Y_he_r=f(130, Tf) is given by eqn. (10) while Yc_o is the

thickness of the cryostat wall of 10-15 cm (i.e., typical values for large-size helium

cryostats). The stand-off distance ygg is the upper bound of the minimum distance
between the detector CM and the heavy walls of the cryostat that defines an area

(cylindrical and centered at the cryostat center-line) where the gravity gradients generated

by the cryostat are sufficiently low. An upper bound of 0.4 m can be adopted across a

variety of cylindrical cryostats for sizes and masses of interest to this project.

One obvious consideration is that the internal diameter must be large enough to contain

the instrument package. This constraint, however, is already accounted for by the fact

that 2ygg > %, where wp is the width of the instrument package that is presently estimated
at about 40 cm. The overall length of the capsule is related to the external diameter

through the fineness ratio that, as explained previously, needs to be about 1:4 in order to

keep low the value of the drag coefficient, especially in the compressible flow regime.

The next step is to estimate the minimum mass required for the cryostat. Most of the

cryostat mass is for the metal of the vacuum chamber that has to withstand the external

atmospheric pressure (at ground level). From engineering formulas for the buckling of

cylindrical vacuum chambers we obtain that the critical thickness of the vacuum chamber

walls (at buckling) is given by:

1

scrit (48)
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whereR and L are the radius and length of the vacuum chamber, s, ri, is the (minimum)

thickness of the load-bearing shell, E is the Young's modulus of the material and p_ the

external pressure. The cryostat length is readily computed as:

L = rlzff + 2ygg (49)

The minimum cryostat mass is then computed as follows:

_n = VScritTrpD(D]k + L)Mc,_o
(50)

where P is the density of the material, D the cryostat average diameter, v is a load safety

factor and k is a shape factor that is equal 2 for flat cryostat caps and 1 for hemispherical

caps. After adopting v = 3 and eqn. (48) to compute the thickness, we find that eqn. (50)

provides masses which are in line with actual values of large cryostats (as verified with

Janis Research). Since the cryostat is the heaviest component of the capsule, we can

estimate the overall (minimum) mass Mcr_, of the capsule as a proportion of the cryostat

mass M = YMcryo.

The actual mass of the capsule M, however, is defined by the ballistic coefficient 13o

once the external diameter of the capsule is determined as follows:

M = _CDoA (51)

where A is the frontal area of the capsule computed through eqn. (47).

Consequently, we must verify that M > M,_,. If the inequality is true we can simply

add ballast to the capsule in order to preserve the values of the geometrical variables and

meet the actual mass requirement. In this case, the vacuum chamber of the ballasted

capsule will satisfy the strength requirements captured by eqn. (48). If the inequality is

violated, the total mass determined by the ballistic coefficient is too small to build a

cryostat that is strong enough to withstand the atmospheric pressure. The violation of

this inequality will be dealt with in the optimization process as a (strong) penalty on the

cost function as explained later on.

Fig. 39 shows an example of a contour plot of two of the key output variables, that is,

the capsule mass and the capsule external diameter vs. the low-speed ballistic coefficient

and the free-fall time for realistic values of parameters.
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Figure 39 Contour plot with grid lines showing capsule mass and external diameter vs.

tow-speed ballistic coefficient and free-fail time.

The goal of the optimization process is to define the size and mass of the capsule that

minimize the value of a cost function. The cost function consists of the overall capsule

mass, the capsule diameter (which is related to the overall capsule length), and the free-

fall time. The cost function for this optimization problem can be expressed (and the

choice is not uniquely defined) as follows:

aiM + azDext

CF = _ + PM + Po with tf _tmi . (52)

where M and Dox, are the overall mass and external diameter of the capsule, zf is the free-

fall span inside the capsule (which defines the cryostat length), t_n the minimum desired

free-fall time, tfthe free-fall time, at and a2 are weighting coefficients and PM and PD are

penalty functions. PM is the penalty function for the total mass and Po for the external
diameter.

The structure of the cost function is readily understood after considering that the

experiment accuracy depends on the square root of the integration time. The minimum

free-fall time has to include the time required to damp initial transients (a few seconds)

and also a minimum number of cycles needed for a reliable extraction of the signal from

noise. The weighting coefficients adjust the relevant weights of the two quantities at the
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numeratorby making themcomparableand/ormaking onecomponentmore important
than the otherone. By adoptingmetersfor the units of length and metric tonsfor the
unitsof mass,thetwo weightingcoefficientshavethesameorderof magnitude.

Going back to the penalty functions,obviously the overallmassof the capsulemustbe
greaterthantheminimum (or critical) massM,,, determinedpreviouslyandsmallerthan
themaximummassMm,,,thanareasonablesizeballooncancarry to analtitudeof 40km.
Note that Mma,,is a fixed valuewhile the critical massdependsupon the optimization
parameters.

In a similar manner,the externaldiameter(which alsodeterminesthe overall lengthof
the capsule according to Lc = Dex,/8) must be large enough to accommodatethe
instrumentpackageplus the cryostat walls (i.e., larger than Dmj,)and smaller thana
maximumvalueDmax.In this casebothvaluesarefixed andmoreoverthefirst inequality
(largerthan)is supersededby eqn.(47) if 2ygg> wp.

The penalty functions arebowl-shapedfunctions which are equal to zero for values
within thetwo boundariesof theinequalityandwhosevaluerapidly increasesastheinput
variable approachestheboundaryvalues. Fig. 40 showsthe masspenalty function for
two values of M,_( = 0.3 ton and 1.0 ton, respectively, and Mma x = 2.2 tons. The

maximum value of the penalty function is quite arbitrary. It simply needs to be quite a bit

larger than the expected range of values of the first term that appears on the right hand

side of the cost function in eqn. (52).
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Figure 40 Example of mass penalty function with Merit = 0.3 ton and 1.0 ton, and

M,,,_x = 2.2 ton.

A similar penalty function with fixed-valued left and right boundaries was derived to

penalize the external diameter of the capsule. Without going into excessive details, the

penalty functions are obtained from a pair of exponential functions with a set of

parameters and power exponents that shapes the function appropriately.
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Optimization Results

The optimization routine has been exercised for a large number of cases in order to

inspect the influence of any given input parameter on the output/design parameters and

the cost function. In the following we will show only the most important results relevant

to: (a) a cryostat made of Aluminum and (b) a cryostat made of Steel. The numerical

parameters adopted for computing the results shown in Figs. (38) and (39) are as follows:

instrument package width wp = 40 cm; low-speed drag coefficient of the capsule CD0 =

0.1; fineness ratio of the capsule 5 = 0.25; wind shear = 0.005 m-s-l/m; wall thickness of

cryostat = 15 cm; stand-off distance for reducing gravity gradients ygg - 40 cm;

uncertainty factor on drag deceleration rl = 1.5; strength safety factor for vacuum

chamber v = 3; mass ratio capsule-mass/cryostat-mass y = 2; density of material 9 = 2800

kg/m 3 (Aluminum) and 7800 kg/m 3 (Steel); Young's modulus E = 80 GPa (Aluminum)

and 200 GPa (Steel). Moreover, the maximum capsule mass for a mass penalty in the cost

function is equal to Mmax = 2200 kg. The maximum external diameter of the capsule for a

penalty is Dmax = 2.2 m (which implies a maximum capsule length of 8.8 m). The weight
coefficients have been as follows: a_ = 1 (mass) and a2 = 1.5 (external diameter) in which

masses are expressed in metric tons and diameters in meters. More weight has been

given to the diameter rather than to the total mass because as it wilt be seer_ later on there

is a fairly large mass margin (large balloons can carry a few tons) while a large external

diameter leads to long capsules that are difficult to handle and transport.

In Figs. 41 and 42, the value of the cost function is shown as black contour lines and

the contour regions are colored with the deep blue color corresponding to the minimum

of the cost function. The grid lines of the free-fall span are also added to the figures in

green color. The figures provide a host of useful information as the grid lines specify the

values of key variables such as capsule mass, external diameter, and free-fall span (of the

instrument package inside the capsule) for any point identified by the coordinate [30and tf.

The equations shown previously then enable us to compute readily other key design

parameters: the cryostat length L from eqn. (49) and its mass by dividing the capsule

mass by %

Fig. 38 shows the results for a cryostat made of Aluminum and Fig. 39 for a Steel

cryostat. The cost function identifies the area on which to focus the selection of the key

design parameters. In the (desirable) deep blue area (inside the smallest circular contour

lines) the cost function is rather shallow and, consequently, the region for selecting the

design parameters is reasonably large. In the dark color region, one of the mass or

geometrical constraints has been violated and consequently the penalty functions bound

the design area. Note that the maximum capsule mass limits the design area on the

right-hand side of the plots while the (critical) cryostat mass and the maximum external

diameter of the Capsule fimit the design area on the left side of the plots. In the Steel-

cryostat case the (critical) cryostat mass is the leading boundary condition on the left side

of the design area. In=the lower side of the plot, the design area is limited by the

minimum free fall time that has been set equal to 15 s in order to allow for a reasonable

numbers of signal cycles.
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Figure 41 Cost function in the capsule parameter space (Aluminum cryostat)

The figures show that an external diameter in the neighborhood of 1.4 m is a valid

_election for the capsule based on the assumptions of this analysis. The 1.4-m diameter

:ontour line cuts across the region of the minimum value of the cost function.

Furthermore, the minimum-value region is larger for an Aluminum cryostat than for a

Steel cryostat because in the latter case the boundary of the minimum (and critical)

cryostat mass encroaches into the low-valued area of the cost function. Consequently,

Aluminum is preferable to Steel as it allows wider margins to work with in the capsule

design. After focusing on Figure 41, an "optimal" design choice could be an external

capsule diameter of 1.4 m (with an overall capsule length of 5.6 m). The overall capsule

mass could start at a minimum value of about a 1000 kg which provides a free fall time of

23.5 s. Note from the figures that the free-fall span contour line is about parallel to the

1.4-m external diameter line. This situation implies that we could move the design point

along those two lines by increasing (with ballast) the capsule mass and increasing the

free-fall time. Consequently, a cryostat of given length (see eqn. (49)) can provide longer

free fall times by simply making the capsule heavier with ballast. The free-fall time can

be increased by 1 s for every 250-kg ballast (or other equipment) added to the capsule up

to the point where the upper mass limit is reached. The low-speed ballistic coefficient 130

of the capsule will vary from about 6500 kg/m 2 for a capsule mass = 1000 kg to 13,000

kg/m 2 for a capsule mass of 2000 kg.
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Figure 42 Cost function in the capsule parameter space (Steel cryostat)

This "design concept" optimization does not intend to exhaust the design option for

the capsule which will have to be revisited many times before the design is frozen based

on additional system analyses. However, this process is a valid starting point to provide

preliminary numbers for the analysis to be conducted by our cryostat subcontractor Janis

Research. The optimization process also provides a framework that lends itself to future

refinements for evaluating system design parameters visa vis performance input

requirements and engineering constraints.
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REQUIREMENTS DEVELOPMENT

Table 1

Design Driver

Free-fall (time > 20 s)

Development of Requirements vs. Design Drivers (version #1)

Science- Engineering Requirements i

originated Reqmt.

Tolerable

differential
acceleration

N/A

Amplifier noise (white) < 6x10 "t5 g_z
TN < 60 mK

proof mass > 5kg

Brownian noise (white) < 6x10 -15 g_z tOo/Q < 2n/105
rad/s

T< I0K

Viscous drag on proof < 10 -1-"g Pd < 10-9 mBar

masses (tic)
Temperature gradients < 5x10 16 g AT/Ax < 0.1 K/m
[Radiometer effect, (t0)l

Acceleration noise inside < 10 q2 g CMRF < 10 .4

capsule in free fall

Earth's gravity gradients Requires

Cryostat's gravity

gradients
(distributed mass)

Gravity gradients of lump
masses on board capsule

Magnetic disturbances

Higher-order mass
moments

Centrifugal gradients due
to skewed rotation axis

< 10 -12g (260)

< 10-16g (0_)

< 10 -16 g

< 10 -I6 g

< 10-_5g

Detector/_ .........

Package
i io,i!ii: : i!ili

i,

Transient

damping time
<Ss

Preamp.

centering of

proof masses (8 0

along spin axis

Centering of

proof masses

within 10 _m

Centering of
proof masses
within 10/am

Use Niobium

alloy blanket
around detector.

Degauss proof
masses

Evaluate reqm.

on cylindrical

symmetry of

sensing masses
Evaluate reqm.

on centering of
proof masses

Limit LHe

Drop System

[30> 5000 kg/m 2

sloshing in 0 g

N/A N/A

LHe cryostat N/A
High-Q proof

masses

N/A N/A

N/AT uniformity

inside cryostat
Pc < 106 mBar

N/A

Cryostat internal
dia.> 1 m

N/A

Temperature of

package
T<Tc

(T_ = critical

temperature)
Evaluate effect of

distributed mass

of cryostat

N/A

Structural and

attitude

freqs. >> ok

Verticality before
release

8x_ < 0.1 ].tm-deg

N/A

Mass-distance
exclusion zones

(see Fig. 33)

Limit magnetic
moments outside

sensor package
M,n < TBD A-m 2
and r > TBD m

N/A

co = signal angular frequency; oJ0 = detector resonant angular frequency

Evaluate reqmts.

on leveling and
release

mechanisms
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Table 1 showskey requirementsof major subsystemsthathavebeenidentified thus
far or that will beevaluatedduring thenext year researchactivity. Table l is a work in
progress(presentlyversion #1) which will evolve over the duration of the definition

study.

UPDATED REFERENCE CONFIGURATION

One of the important results of the analysis carded out is that the small vacuum

chamber at the top of the capsule has been eliminated in favor of a fully cryogenic

vacuum chamber (see Fig. 43). The new solution eliminates the problem of the gravity

gradient produced by the small cryostat in the proximity of the detector and also provides

more clearance to the instrument package during the early stage of free fall.

k

I!t
_, r r f

Figure 43 Sketch of new reference configuration of capsule.

The new configuration also has the advantage of using a conventional design of the

cryostat rather than a custom made one with doors opening at the bottom as in the

previous reference design.
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A preferredsizeof thevacuumchamberhasalsobeenidentified asacylinderof 1.2-

m diameter and 2.3-m length which results in an external diameter for the capsule of

about 1.4 m. Preliminary data on large cryostats (from Janis Research), indicate that the

mass of a cryostat of the size considered above will fit well within the mass limit of the

system. Such chamber/cryostat will allow free fall times in the range 23-27 s depending

on the amount of ballast added to the capsule.

The preliminary results of the thermal analysis also brought changes to the reference

design of the instrument package. The preamplifier has been moved close to the sensor

and the electronic box is placed farther away from the sensor. These two boxes are

mounted on the longitudinal axis of the instrument package (see Fig. 44) instead of

placing them on a Saturn-like ring that was more strongly thermally coupled to the

sensor. The boxes are thermally weakly linked to one another thanks to thermal shields,

interposed among them, which through radiation reduce the heat exchanges. The

preamplifier and electronic boxes are mirrored on the opposite side of the sensor by

equal-mass dummy boxes for dynamic balancing.

Figure 44 Schematic of instrument package with sensor cut up and electronic boxes.

The reference design will evolve as more analysis is conducted on a number of issues

that can potentially affect the system conceptual design and ultimately the experiment

performance. The last section of this report summarizes critical areas to be investigated

during the next year of activity on this project.
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THEORETICAL IMPACTS

Contribution of Parity Non-conserving Weak Interactions

Introduction

A theoretical question that we sought to address can be simply stated: What is the

contribution to the mass-energy of each material due to the parity non conserving part of

the weak interaction? The reason that we sought an answer to this question was to find

out if our experiment would be sensitive enough to determine whether or not this

contribution obeys the weak principle of equivalence.

Unfortunately, the present level of development of physics does not allow us to

address our question reliably. Knowledge of the physics of nuclear matter is too

primitive. We have therefore had to make a number of "reasonable," but nonetheless

somewhat arbitrary, assumptions to carry out the calculations. The discussion below

mentions each of these assumptions. The results of the calculations indicate that our

experiment will not be sensitive to the contribution to mass-energy of the parity non

conserving part of the weak interaction.

Evaluation of contribution

The materials to be compared in the experiment should have binding energies stored

in forms which are as different as possible. For example, if gravity couples differently to

protons and neutrons, we should compare elements with different proton to neutron

ratios. A new long range force could also be detected by comparing such elements. A

force coupling to baryon number would cause an acceleration proportional to the total

number of protons and neutrons divided by the mass, or for a single nucleus, to

(mp -m,)
(Z+N)/(mp Z + m, N)-I/mN(1- x). Here x is the ratio Z/A and Z, N and A are

mN

the number of protons, neutrons, and combined nucleons. The mass mN is used for the

common mass of protons and neutrons. In order to observe this effect, it is best to

compare heavy elements with x-I/3 to light elements with x~ 1/2.

As we will see below, the energy of a nucleus can depend very sensitively on the

wave functions of the protons and neutrons. We will discuss a force coupling to the

product of proton and neutron densities. Such a force is more significant for nuclei in

which proton and neutron wave functions have greater overlaps. This suggests choosing

a nucleus with a magic number to compare to a less stable nucleus. The filled shell

structure of a nucleus with a magic number may imply greater overlap of the wave

functions of the protons and neutrons.
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Supposegravity couplesdifferently to theenergyproducedby theparity violating
partof theweakforce. We mustcalculatewhatfractionof a nucleus'senergyis storedin
this form, althoughwewill seethat it is not verywell defined. First of all, fight-handed
neutrinosdonotappearto exist,so it is notjust theweakforcewhich violatesparity. The
modelusedin Ref x,_vto calculatethe total weakforce energyof a nucleusis a current-
currentinteraction. To discussthis, let usconsidertheLagrangianfor the interactionof
theweakforce with quarksandleptons. Schematically,it is A_, (J_ + J_'), where J and

J5 are the weak vector and axial currents, and A is the field of the weak force. (This

expression must be summed over the three types of W particles; this formula ignores the

fact that the observed W and Z particles are actually linear combinations of these three

fields with a fourth field.) By including both terms, we ensure that the coupling to right-

handed particles cancels. The first term here is the parity violating term. However, if we

use a contact interaction, taking into account the large mass of the W particles, we find an

interaction of the form Le:: = (J, + J_)(J" + jsu). Multiplying this out, we get four

terms--only the terms coupling the axial current to the vector current seem to violate

parity in this description of the weak force. Another difficulty is that the separate vector

and axial currents are not actually well defined if right-handed neutrinos do not exist.

Since the parity conserving parts of Lef t-contribute one part in 10 8 to the mass of a

nucleus, current limits imply that gravity's coupling to these terms must differ by less

than 10 .4 from its coupling to other matter. The parity violating terms of Eel f contribute

much less to the mass of a nucleus. If li> is the state of the nucleus with weak forces

neglect, then the first order perturbation of its energy due to these terms is <i I juj_ li>,

which vanishes by symmetry. (li> is a parity eigenstate, so the operator changes its parity,

and gives a state orthogonal to <il.) This ensures that the contribution of the parity

violating terms is second order in perturbation theory, and therefore small enough to be

unconstrained by previous experiments. However, Leffis only useful for calculations. It

would be strange for gravity to couple differently to the parity violating part of the weak

force unless it coupled differently to JSuAU in the original Lagrangian. In this case

JSuJ_U would also couple differently to gravity, and this would be a much larger effect.

While we are deciding which terms of the effective Lagrangian will be considered

to be parity violating, we should notice that there are other parity violating interactions

involving pion exchange xxv'xxV_.Ref. xxiv probably overestimated the contribution of

J_,JU to the weak energy of a nucIeus, because of the assumption that the nucleons are

distributed independently of one another in a nucleus. In fact, protons and neutrons are

generally not closer to one another than their radius of 10 _s m, or (160 MeV) _ as

compared to the range 1 GeV _ of the weak force. Thus, the weak interaction of nucleons

occurs only very rarely. The pion exchange force has a range larger than the size of a

nucleon, so the assumption that nucleons are independently distributed is more accurate

when considering this force.

The interaction between nucleons and pions is described by the Lagrangian
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m i m

Lm, = --ig_N Nysf . _N - -if,, N(_ ×if)3 N

(Ref xxv) where we have used isospin notation, so that N is an isospinor of proton and
f N

neutron fields: N=IP],, is a vector of three Pauli matrices, and:ff is the vector of pion
\ /

Jr + +zc- .Tr + -zr-,re0). The first term in the
fields, which are usually written as ( x_ ,l

Lagrangian represents pion exchange due to the strong force (g,u =13.45), the second to

the weak force (f,_ =4.54×10-7). This term violates parity. We will calculate

contributions to the energy of a nucleus arising from this term.

Any interaction in which a light particle like the pion is exchanged can be

approximated by interaction potentials. For example, we begin with a simplified model

of spin zero protons and neutrons which can exchange a neutral spin 0 pion (of mass m,0.

Let the interaction Hamiltonian be g(n'n+ptp)rt. Then the amplitude for pion emission is

-ig. Let us calculate the potential acting between protons and neutrons. The Feynman

diagram is:

?

i g2
We have

The amplitude associated with this is A=J;(-ig) 2 q2 _m 2 _z +m 2 _

omitted the time-like component of q, since this is the energy transferred between the

nucleons, and is small compared to the momentum in the non-relativistic limit.

Compare this to the calculation of scattering under the influence of a potential V.

ei(_-_. +p2._p) ei(p3._.+ p4._p)
Let the initial and final states be IV, >= and IV: >= In time

(2n') 3

independent perturbation theory, we
!

c/ =<ftT(-_,t)[i>= S< f l V[i> e'_E:-E')"dt '

solve for

(27t') 3

the coefficient

'-" >V: 2;,rcS(E/ - E, ).

It is not hard to check that V: = __6(_ + Pz - ?3 - P4)_ d3xV(-_) e'o_
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The Feynmanamplitude is closely related to this coefficient; however, it is

calculated with the wave functions normalized so that

< P3P4 I P, P2 >= 4E_E2(2n)35@_ -/33)5@2 - _b4) = 4mu2 (2_)66(/_1 -- P3)5(P2 -- P4)"

Thus we must multiply our value for cf by 4mu2(2_) 6. The relationship between cf and

A is thus

iA(2n)'6(E3 + E4 - El - E2)dJ@, + fi2 - P3 - J_4) = 4m,v2(2rc)6cf •

Therefore

A = _4mN2ijV(,2)e,O._d3,2,r and the inverse Fourier transform of this gives V. We find

-g2e-""I_ , where the transform is evaluated using spherical coordinates.
that V(Y) = (4mN2)4n [ 2 L

This is the Yukawa potential, but it is not actually the true interaction potential of the

protons and neutrons, since protons and neutrons really have spin 1/2, and have axial

couplings to the pions.

Expanding the Hamiltonian given above, we find the parity conserving and parity

violating pion-nucleon interactions

Hpc = ig_w l d3,2(pg5 p - rrysn)zc ° + ,¢r2(py,nrc + + gy,prc-)

and

H m. = *J__I d3 Y pnrc + - rrpn- "

The n's are pseudoscalar particles and P75P and similar terms are scalars, and so it is the

first of these interactions which is parity conserving. This is actually a convention, since

if the second interaction had been discovered first, the pions would have been called

scalar particles. A consequence is that an interaction between nucleons by exchange of

pions is equivalent to a parity conserving potential as long as both pion-nucleon vertices

are governed by the same interaction. If the pion is emitted according to the parity

conserving interaction and absorbed according to the parity violating interaction, then the

equivalent potential distinguishes between left and right. We call the three potentials

V?cPc ,V?vm,, Vm.pc, where the subscripts indicate the nature of the pion exchanges (parity

violating or parity conserving).
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Since the PVPV interaction is mediated only by charged pions, the only possible

interaction is the above. The proton turns into a neutron when it emits the _* in order to

conserve charge. The calculation of the potential associated with this interaction is very

similar to the calculation above for the simplified model. There are two differences.

First, the extra factors proportional to the mass which arise from normalization

conventions do not occur for spinors. Second, since the proton and neutron have two

spin states, we must determine how the interactions affect their spins. Since the pions are

spinless, a nucleon's spin does not flip when it emits a pion. Thus if the proton initially

has spin up and the neutron is spin down, then the scattered proton has spin down and the

scattered neutron has spin up. The effective potential for this interaction is

f2 e-.,_l_-_2 i

2 4zc I _ -F2 [

and neutrons into protons.

X, where X is an operator which turns protons into neutrons

Since particles can change types, we will use second quantization. The operator
4-

n_ (_)pl. (Y_)+ n.L (_)p.L (Y_) turns a proton at point r, into a neutron at the same point

with the same spin. So the operator X is equal to

[p_ (_)nq. (F_) + p_ (Y_)n+ (F_) ][n_(F2)p,(F2)+n++(Fz)p,(Y2)].

The interaction Hamiltonian is therefore

Hm,, m.... II d3_dSFz
f2e

-- [ p_ (F])n T(_) + p_ (F])n+ (F_) ][ n_ (_z)Pr (F2) + n,_ (?z)P+ (F2) I.

This interaction does not seem to mediate a force between two separated

nucleons, since the nucleons can't retain their identity. In particular, it cannot mediate a

force between two separate nuclei, even though it does contribute to the binding energy

of a single nucleus. Suppose the nucleus can be modeled as consisting of two Fermi seas,

one of protons and one of neutrons. (Of course Hpcpc, which is much larger than any

parity violating interactions, produces correlations in nuclei.) There are protons of both

spins and of every momentum less than kp, and there are neutrons up to k°. We will

assume the nucleus is very large so that we can approximate the waves by plane waves,

and we will calculate the energy density due to Hpvpv. Then since the proton and
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neutronwhich interact are in the samenucleus, the interaction doesnot changethe
nucleustype.

Theenergyshift is <i IHptT_v]i>. Consider the action of Hj,_.pf, on the Fermi sea.

It acts on two particles--a proton of momentum /_t and a neutron of momentum /_2,

changing their momentum and interchanging their particle types. Since the resulting state

is multiplied by <i I, it must have the same occupied states as li> in order to give a nonzero

contribution to the energy. Thus the final proton must have the same momentum as the

initial proton, as in the following diagram:

proton pro10n

k
1

/ k

neutron neutron

k k
2 2

Also, the particles must have the same spin, since the interaction does not flip spin.

In order to see at least one failure of our approximations, we consider two general

wave functions for a proton and neutron and calculate their interaction in these states.

We ignore the spin wave function, and set

Iv >: G)A p">-L( )f,G)lnp >).

The wave function here is antisymmetric in space and isospin, according to the Pauli

exclusion principle for multiple types of fermions. Thus neither _ nor ?2 is the

coordinate of the proton. But f_ must be the wave function of the proton. Assuming both

spins are up,

_2

HetT, t. l q/ >: --_f IIV(._l - _2)d3.7,d3;2P_(._,)nT@ )n'_ (;2 )PT(Y2 )[Ji_(_)A(_) l Pn > -f2(_)f(Y2) l nP >]

/,2
: -'--_-_';. -_)A(;_)/2(_)I,,p > - r'(;_ - ;:_A(_)ft (;:) Ipn >].

2_-t ',2

In evaluating the integrals, we must choose ._ and._2 to coincide with _ and ;2 in one

order, so that ._ represents the location of the initial neutron. Now, noticing that

<pnlpn>=<nplnp>=l while <pnlnp>=<nplpn>=0, we obtain

>: @ _'3_a3;2r,'(_ .......<_1Hevev 1_" II -r2)[A(r_) f2(_2) fz(r_)A(r2)+f2(_)*f_(;2)*f_(_)f2(;2)]

- I-"22II d3_d3;2 ,V(_ -7:2)f(_l)*f2(_)fl('72)f2(_l)* ,
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where the two terms can be combined by exchanging ;, and % in the second term.

This has the form of an exchange force--notice that if f_ and I"2are never nonzero at the

same point, then the integrand vanishes. This is why we claimed above that the shell

structure might affect the parity violating energy; a simple form with plane wave states

ignores all the structure of the nucleus.

In order to find the total energy, we must sum over all occupied proton and

neutron states fl and f2 respectively. There is also a self-interaction due toHevm, in which

a nucleon changes type and then changes back. This gives an infinite contribution to the

energy, and is also more significant because a particle is certain to be at the same location

as itself, so the comment about overlap at the end of the last paragraph doesn't apply.

We will discuss self-energy contributions at the end.

e-m=l_-_21
and plane waves which are normalized so that their

Substituting V(F_ -F:)- 4, I'_ -F2 [

integral over the volume V of the nucleus is 1, we obtain an energy proportional to the

Fourier transform of the Yukawa potential. It is equal to

<Hmv v >=
f2 1

2V 2m,_ 12
, and the sum over all pairs of nucleons is

L"
Z ,+2V f_,l<kpl_21<k,m. [/_t --/_=

where the factor of 2 arises because the proton and neutron can be both spin up or both

spin down. Converting the sum to an integral in the usual way, we obtain

6E"c=_,, t(_)3 ) I _I m,=+l/7_/_al2"
[ktl<k p ]ka r<kn

First integrate over/_2, taking the z-axis along /7_.

1 _ 2rci k22dk2 i sin0d0

m. t- o o m,, +k_ = +k2 2

k. in(m, 2 +kZ +k22 _
= 2re I k22dk2

o 2klk2

k,, 2

=lri_dk21n(rG +(k, +k2) 2
o m,_ 2 +(kt -k2) 2 )

- 2k_k 2 cos0

2kjk 2 cos0) [g
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We now integrateover the directionof /_, giving a factor of 4rt, and then give the

expression for the integral:

_Epv

V

The integral is evaluated by repeated integrations by parts.

We would now like to evaluate this expression as a function of x = Z/A. The

volume of a nucleus is proportional to A; that is, each nucleon occupies a fixed volume.

4 3 fmXxvii.The volume is given by 7zrr0 A where r0 =1.2 As usual, the Fermi momenta are

given by kp=(3_2np) 1/3 where np is the proton number density, so

kp = L3 F---_x = 3203.f-x MeV and similarly k, = 320_J1- x MeV Furthermore, the mass
_!b/ 4

of a nucleus is roughly Am N, so

-t ) 6Ep ._Ep_. = V 6Epv _ sZrro 6Epv _(1.O×IO_gMev_4 (Notice that our
m Am u V m u V V

estimates, for x = 1/2, give a Fermi momentum of 250 MeV, which is somewhat small

compared to the nucleon mass, so our nonrelativistic approximations (in particular,

neglecting the time-like component of q in the derivation of the effective interaction)

seem reasonable.)

The following figure shows _ as a function of x; it is on the order of 10 16 and
M

is almost exactly equal to 6Eev _ 9x(1 -x)x |0 -16 , which is much easier to interpret than
M

the formula given above; for a contact force, the number of interactions occurring in the

nucleus is proportional to the product of the densities, which is proportional to x(1-x).

(The suggested derivation of this formula--assume the mass of the pion is very large and

replace the interaction by a contact interaction--gives an incorrect answer,

30x(1-x)x10 -t6 . The mass of the pion is not large enough to regard Vpv as a contact

interaction.)

78



2

1.$

1

0.5

O.Z 0.4 0.6 0.8 1

The fraction we have just calculated is very small, and (since we can only

compare different nuclei) its variation from nucleus to nucleus is even less--2xl0 _7, if x

varies from 1/2 to 1/3. There are similar smooth empirical formulae for the total mass of

a nucleus, but the mass differences are somewhat larger from nucleus to nucleus because

the mass depends in a more jagged way on the atomic number. Thus, the plane wave

description of the protons and neutrons cannot suggest which nuclei have unusually large

or unusually small contributions from the weak force. There are many other

contributions to the parity violating energy as well--for example, the interaction VpcPv

produces an energy shift at second order in perturbation theory. This can occur only at

second order because <i] VpcPv]i> vanishes--after all, [i> is a parity eigenstate since the

strong forces which determine the structure of the unperturbed nucleus are parity

conserving. However, by introducing an intermediate state of opposite parity and very

similar energy, one can hope to obtain the largest possible weak parity violating

contribution to the energy. For _gF, Ref xxviiiestimates SEer =7x10 -_7, which is very
M

similar to what we obtained above. Ref. xxviii did not calculate the matrix elements from

the theoretical formula for Vpcp v but from an experiment mentioned in Ref xxv. The
latter reference also calculated the matrix element from a theory based on exchange of

pions and other particles, giving a value which was off by only 20%.)

Ref xxviii's calculation did not take the direct exchange of single pions in which

both the emitted and absorbed pion have parity violating interactions, leading to an

impression that only nuclei with narrowly separated partners of opposite parity have large

, _Epr

values of _ . However it leads to a very clear case in which one expects a jump in the

parity violating energy-choose a nucleus [i> which is close in energy to another nucleus

li'> with the opposite parity. Fluorine is not the only choice. If one were to calculate the

matrix element of Vpcpv between these states theoretically (the calculation would be

similar to the above), one would find that < i'[ VpcPv l i >o_ volume o_ M Thus,
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_E,,v _ _ l< i' l Vp_.p_, l i >l 2 m
o_ , where the denominator here is just the energy

M M M, - M r, M, - M,.

denominator (with energy replaced by mass). (M is either of the two masses.) So we

expect an especially large parity violating energy if the mass difference of the nucleus

and its excited state is small compared to the mass of the nucleus.

Finally, Ref. xx_xcalculates the weak-force self-energy of a proton or neutron and

finds that its fractional contribution to the mass of a nucleus is 10 times larger than the

energy from the interactions of different protons and neutrons in the nucleus calculated in

Ref. xxiv. Most likely, the parity violating self-energy of the protons and neutrons is

more significant than anything we have already calculated. This returns to one of the

most obvious models for equivalence principle violations--assume that gravity couples

differently to protons and neutrons. This gives gravitational mass differences which are

linear in x (just as we found in the model of a long range force coupled to the total

number of baryons in a nucleus). So a simple approach is to choose nuclei with the

largest and smallest possible values of x. (Hydrogen and Uranium are suggested in Ref.

There are three reasons why it is unlikely that gravity couples differently to the

"parity violating part of the weak force." First, this depends on whether one uses the

fundamental Lagrangian or the current-current Lagrangian as discussed above. In

practice, the definition of the parity violating and parity conserving energies is very

technicatwa summary of the definition we used is "it is the part of the weak force which

is second order in perturbation theory." Second, in the electroweak theory, photons are

linear combinations of a W particle and another gauge particle, so if gravity couples

differently to the W particles, it probably couples differently to the photon as well. Third,

all self-energies are infinite in any case. This is why the self-energy of the protons and

neutrons calculated in Ref. xxix is much larger than the energies of the nuclei calculated

in Ref. xxiv. The interactions of the quarks inside the protons and neutrons are larger

than the interaction energies of different protons and neutrons because the quarks are

closer together. If the quarks are point particles, then they contribute infinite self-

energies due to the weak force besides these other energies. Fourth, energy cannot be

separated into different forms of energies. For example, the energy we calculated above

includes the mass of the virtual pions, which is due to the strong force.

KEY AREAS TO BE ANALYZED

Critical issues to be addressed during the next year research activity are as follows:

Detector rotational dynamics after release:

evaluate effects of rotational acceleration for axis of rotation skewed with respect

to the symmetry axis of the sensing masses;
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include the effects of gravity gradient field inside capsuleand Earth's gravity
gradientsin theexternalforce model;

derive dynamics-relatedrequirementsfor capsuleleveling mechanism,release
mechanismandcenteringof sensingmasses.

Higher-ordermassmoments:

- evaluateeffects of higher order mass momentsdue to nearby masseseither
concentratedor distributed;

- estimatesafedistancesfrom non-corotatingmasses;

- deriverequirementsoncylindrical symmetryof sensingmasses.

Magneticdisturbances:

- revisit the early estimatesof magnetic disturbancesas a result of changed
configurationof instrumentpackage;

- derive requirementsof magneticcleanlinessfor typical levels of ferromagnetic
impuritiesin thesensingmasses.

Thermalanalysis:

- evaluatethe temperaturedrifts of sensorandattachedequipmentbefore release
(whenattachedto thecryostat);

- refine estimatesof temperaturevariationsafter release(during the measurement
phase)for inter-connectedsensor,preamplifierandelectronicboxes;

- refinethermaldesignbasedonnewresults;

- derive requirementson optical properties,thermal conductivity, and tolerable
energy dissipations and power duty cycle during calibration of detector,
preamplifierandelectronicunits.

Cryostatpreliminarydesign:

- evaluate(throughJanisResearch)masspropertiesandcostof largecryostat;

- addressissueof Heliumcontainmentin zerog;

- refine analysesof gravitygradientsif massdistributionof cryostatis substantially
different from currentestimates.

Sensorreleasemechanismandcapsulelevelingmechanism:
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assessrequirementsresultingfrom dynamicsandgravity gradientsanalysesand
defineseparatesetsof requirementsfor thereleaseandlevelingmechanisms;

work onconceptualdesignof sensorreleasemechanism;

workonconceptualdesignof capsulelevelingmechanism.

Detectorrequirements:

- continueworking in cooperationwith our non-USpartnerson the definition of
detectorrequirements;

- define,in cooperationwith our partners,thoselaboratorymeasurements/teststhat
needto beconductedfor completingthesetof requirements.
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